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ABSTRACT

Evaluating the real capabilities of large language models in low-resource languages still represents a challenge, as many
existing benchmarks focus on widespread tasks translated from English or evaluate only simple language understanding. This paper
introduces UA-Code-Bench, a new open-source benchmark established for a thorough evaluation of language models' code
generation and competitive programming problem-solving abilities in Ukrainian. The benchmark comprises 500 problems from the
Eolymp platform, evenly distributed across five complexity levels from very easy to very hard. A diverse set of 13 leading
proprietary and open-source models, generating Python solutions based on a one-shot prompt, was evaluated via the dedicated
Eolymp environment against hidden tests, ensuring code correctness. The obtained results reveal that even top-performing models,
such as OpenAl 03 and GPT-5, solve only half of the problems, highlighting the challenge of code generation in low-resource natural
language. Furthermore, this research presents a comprehensive analysis of performance across various difficulty levels, as well as an
assessment of solution uniqueness and computational efficiency, measured by both elapsed time and memory consumption of the
generated solutions. In conclusion, this work demonstrates the value of competitive programming benchmarks in evaluating large
language models, especially in underrepresented languages. It also paves the way for future research on multilingual code generation
and reasoning-enhanced models.
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Introduction. Large language models (LLMs), especially LLM-powered assistants, are now
common tools in both general and expert work. Hundreds of millions use them for search, guidance,
analysis, and everyday automation. Nowadays, even coding, which seemed to be an overly complex
task before, is no longer a stopper for modern reasoning models that turn natural-language
specifications into working code, build or refactor systems, write tests, and even review code. Tools
like GitHub Copilot improve productivity (up to a 55 % reduction in task completion time) and
lower mental load for 73 % of developers on repetitive coding tasks [1]. This indicates strong
demand for Al assistance across various domains.

Despite these successes, most code generation benchmarks and validations have focused on
problems described in English. Moreover, the studies have shown that LLM performance in low-
resource languages degrades substantially on high-precision tasks [2]. However, the field of LLM
benchmarking in the Ukrainian language mainly consists of standard datasets with trivial tasks like
classification or question answering, as well as translated English evaluation sets. In addition, the
rule of thumb is that the quality of the input directly influences the obtained result. For instance,
when a student or engineer poses a coding challenge in the relatively low-resource Ukrainian
language, even advanced code assistants may fail to respond, effectively forcing users to translate
their problems into English, which is not always exact and slows work, widening the gap with
English speakers. Support for local languages is therefore also about fairness and access.

To close the gap, this work aims to establish UA-Code-Bench — a first Ukrainian language-
native code generation benchmark, enabling rigorous evaluation of LLM code generation
correctness and efficiency on competitive programming tasks.

This includes the following tasks:

— building, for the first time to our knowledge, a large-scale Ukrainian code-generation
benchmark with programming tasks of different complexities sampled from the Eolymp platform;

— evaluating modern open and proprietary LLMs, with their correctness assessed using test
suites from competitive-programming platforms such as Eolymp;
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— analyzing overall and per-difficulty performance, as well as memory/latency trade-offs.

These steps shall provide insights into which models excel or struggle, and why, shedding light
on the current limitations of Al in competitive coding and low-resource language understanding.

Related works. Automatic code generation has progressed through several phases of active
development. Early 2000s systems were rule-based, fully transparent at a cost of poor
generalization and evaluated by code-quality metrics such as cyclomatic complexity. Later,
statistical machine learning redefined the task as probabilistic modeling, shifting evaluation toward
similarity scores like BLEU. Pre-LLM neural methods yielded narrow tools like NL2Bash for short
command synthesis [3] and code search from natural-language queries [4]. Invention of
Transformer architecture enabled large-scale pretraining and tuning, leading to LLMs for code like
Codex and AlphaCode, alongside open efforts such as StarCoder and compact open-weight families
(CodeGemma, QwenCoder).

As Transformer-based models have grown more powerful, the benchmarking side of the
research has evolved from somewhat naive similarity-based metrics to metrics that evaluate the
correctness of generated solutions. HumanEval and MBPP standardized unit-test metrics (e.g.,
pass@k measuring if any of those k solutions pass all unit tests) on short English prompts [5, 6].
APPS raised difficulty with tasks of varying complexity, from one-liners to substantial algorithmic
challenges, and showed early large models solved only a small fraction of easy problems [7],
motivating stronger approaches. Benchmarks like HumanEval, MBPP, and APPS primarily focused
on isolated self-contained functions, while a day-to-day software development requires a lot more.
To match real software work, SWE-bench moved from single functions to fixing issues in large
codebases [8].

The big problem with static benchmarks is that models may have been inadvertently trained on
solutions widely available online. Fresh works are mitigating the issue, continuously collecting new
problems (LiveCodeBench) [9] and evaluating on a set of private test cases (CodeElo) [10].

While being methodologically superior, existing competitive programming benchmarks have
focused exclusively on high-resource languages, such as English, leaving a critical gap in the
evaluation of low-resource languages. At the same time, HumanEval-XL indicates that even
powerful models like GPT-4 perform markedly worse in languages with less training data available
[2], often called low-resource languages, such as Ukrainian.

In recent years, the Ukrainian NLP community has made significant contributions by
developing evaluation resources. ZNO-Eval provides a benchmark for assessing the general
capabilities of LLMs using tasks from standardized national school exams [11], and follow-up
studies focused on reasoning models [12]. ZNO-Vision, in turn, extended text-only evaluation on
school exams with multimodal understanding [13]. UAlign was introduced to evaluate the ethical
alignment in a cultural context [14].

This growing ecosystem of benchmarks is crucial for the development of Ukrainian language
models. However, a dedicated resource for evaluating code generation capabilities has long been
absent. This underscores the novelty of UA-Code-Bench, designed to fill the gap.

Benchmark methodology. UA-Code-Bench is built from Eolymp, a widely used Ukrainian
platform with Ukrainian-language statements and hidden test cases evaluated by an automated
judging system. The benchmark contains 500 sampled problems, evenly split across five difficulty
bands (from very easy to very hard) assigned by Eolymp based on algorithmic demands, coding
intricacy, and typical acceptance rate. Lower bands cover basic math, text processing, and simple
control flow. Medium items often combine several algorithms. Hard and very hard mirror contest
problems and require not only intricate reasoning but also efficient implementations for large inputs
under strict time and memory constraints.

Thirteen leading LLMs, proprietary and open-weight, general-purpose and code-specialized,
were evaluated in a one-shot setting. Each prompt contained one Ukrainian example plus a short
correct solution to guide the model on the expected input and output formats. For every task, the
model produced a single solution without retries under a 30-minute timeout, using recommended
sampling parameters with low temperature (0-0.2). The programming language was set to Python 3.
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To judge solution correctness, an automated submission tool was implemented. In a dedicated
space with a seat purchased for each model, this tool submitted code to the Eolymp judge, which
executed it against private tests. A submission was accepted only if all tests passed, wrong answers
earned partial credit, while exceptions, timeouts, or runtime failures counted as failures. Two
primary metrics were used: pass@1 (accepted if 100% of hidden tests pass) and average score (0 to
100). Five secondary indicators complemented them: TOO (tasks uniquely solved by a model), T1T
(accepted solutions with the smallest worst-case execution time), TIM (same as T1T, but for
memory), GE (generation failure, including timeout/invalid or incomplete code), and EE
(compile/runtime error). The benchmark is available at https://huggingface.co/datasets/anon-
researcher-ua/ua-code-bench.

Results and Analysis. During evaluation, it was discovered that out of 500 problems, 14 (1
hard, 13 very hard) failed due to grader issues and were removed. Table 1 presents evaluation
results.

Table 1. Overall code generation result per model (486 tasks total):
TOO — number of tasks uniquely solved by a model;
T1T — number of accepted solutions with the smallest worst-case time;
T1M —same as T1T, but for memory; GE — generation error; EE — execution error

Model bilions | solutions | score () | T | TIT | TiM | o€ | e
MamayLM 9b 9 16 11,97 0 1 3 1 36
GPT-0SS-20b low 20 158 50,81 0 7 10 2 20
GPT-OSS-20b medium 20 208 61,50 1 19 10 3 13
Gemma-3-27b-it 27 53 25,70 0 7 6 3 11
Qwen2.5-Coder-32b-Instruct 32 60 26,63 0 0 5 0 1
GPT-0OSS-120b low 120 188 57,66 1 7 3 11 2
GPT-0OSS-120b medium 120 219 65,99 2 5 6 3 3
DeepSeek-R1-0528 671 198 61,33 0 14 6 15 3
Grok 3 N/A 96 40,48 1 1 18 0 2
Grok 4 N/A 172 45,91 2 5 21 190 2
Claude Opus 4 N/A 158 57,51 0 11 17 1 2
Gemini 2.5 pro N/A 207 61,96 3 25 37 42 1
OpenAl 04-mini medium N/A 238 68,05 5 28 19 2 10
OpenAl 03 medium N/A 246 67,60 3 44 26 16

OpenAl GPT-5 medium N/A 244 66,50 12 15 47 57 4

The top group, with OpenAl 03 (246 accepted), OpenAl GPT-5 (244), and OpenAl o4-mini
(238), all with medium reasoning effort, substantially outperforms the others. However, even the
best system leaves 242 tasks unsolved. About half of all problems (mainly hard/very hard) remain
unsolved by any model. Figure 1 shows per-difficulty stats, and Figure 2 visualizes the average
score per model, accounting for partially correct solutions, which pass some, but not all, of the
hidden test cases. As Figures 1-2 show, the performance drops sharply as task complexity moves
from easy to hard. This indicates that while many models can perform direct translation of simple
Ukrainian instructions into code, they lack the deep algorithmic reasoning. In general, the obtained
results align with model size and prior English-benchmark results [15].
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Fig. 1. Number of accepted solutions per model, broken down by problem difficulty. Each bar
sums to the total solved by that model (max 486). Bars are distorted on y-axis for readability
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Fig. 2. Average scores for the task per model, broken down by problem difficulty. Each bar
represents the average score by that model (max 100). Bars are distorted on y-axis for

readability

An important indicator of a model’s advanced reasoning is its ability to solve problems that no
other model can. Figure 3 presents a chart of how many tasks were uniquely solved by each model.
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Complexity
Very easy
Easy
Medium
Hard

Very hard

complexity

The standout performer in this category is GPT-5 with 12 unique tasks. The small number of
unique solutions indicates heavy overlap, as LLMs tend to succeed on the same set of simple

problems.

In competitive programming, a correct solution is often insufficient. Fig. 4 and Fig.5 present an
analysis of accepted submissions with smallest worst-case execution time and memory.
OpenAl 03 is the speed champion on 44 tasks, while GPT-5 produces the most memory-
efficient code in 47 instances, showing there is no single best model as models exhibit distinct
strengths depending on the metric. All evaluation results can be found at https://uallm.org/code-

evaluation.
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Fig. 4. Code efficiency leaders by execution time (bars are distorted on y-axis for readability)
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Fig. 5. Code efficiency leaders by memory usage (bars are distorted on y-axis for readability)

Conclusion. This research presented UA-Code-Bench, the first Ukrainian competitive
programming benchmark for LLM code generation and reasoning.

The evaluation of 13 modern LLMs on 500 problems from the Eolymp platform leads to
several key takeaways:

— large LLMs can solve complex Ukrainian tasks, but performance drops sharply with
difficulty;

— generalization in low-resource languages remains limited even for the largest models;

— competitive programming tasks expose weaknesses that simpler benchmarks may hide.

The limitations of this research are the narrowness of the benchmark, with only one
programming language being tested, and a single source of problem tasks without contamination
audit. Future work should broaden tasks and modalities, evaluate more models, and add fine-
grained error categories.
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AHOTALIS

OUiHIOBaHHS pEAbHUX MOXKJIMBOCTEH BEMKUX MOBHHMX MOJENIEH Y HU3bKOPECYPCHUX MOBAX BCE ILE 3aJIMIIAETHCS CKIIAJHUM
3aBJIaHHSAM, OCKIJIbKHM 3Ha4YHa YAaCTHHA HASBHUX TECTOBHX HAOODIB JaHMX 30CEPEIKYIOTHCS Ha TOLIMPEHHX 3a/1a4axX, NepeKIaJeHHX 3
aHMIiACEKOl, abo0 TMepeBipsioTh JMine 0a3oBe po3yMiHHs MOBH. Y miii poGori mpencrasneno UA-Code-Bench — Hoswi
3araJlbHOIOCTYITHUN OeHYMapK Uil BCeOIYHOTO OL[HIOBAaHHS 3[aTHOCTI BEIMKMX MOBHUX MOJENIeH FeHepyBaTH MPOrpaMHUM KOA i
PO3B’si3yBaTH yKpaiHOMOBHI 3ajadi 3i croptuBHOro mporpamyBaHus. Habip oxorutioe 500 3amau mnardopmu Eolymp, piBHOMipHO
PO3MOIiIeHNX 3a T1’SIThMa PIBHAME CKJIAAHOCTI — BiJ Ay)XKe MPOCTHX 0 AyXKe CKiamHuxX. PizHomaHiTHHN HaGip i3 13 mpoBigHux
MPOMPIETAPHUX Ta 3arajbHOMOCTYIMHUX BEIMKUX MOBHHX MOJeNel, 0 reHepyBaiu Ko pimeHHs Ha Python 3a iHcTpykumiero i3
omHUM TipukiagoM (one-shot), Oymo oliHeHO y BHiJIEHOMY cepenoBHini Eolymp Ha MPHUXOBaHMX TECTax, IO MEPEBIPAIOTH
MPaBUIBHICTE pimieHHss. OTpUMaHi pe3ylbTaTd JEMOHCTPYIOTh, 1[0 HaBiTh Haiikpami mozeni, 30kpema OpenAl o3 ta GPT-5,
PO3B’A3YIOTH JIMIIE TIOJIOBUHY 3a7ad4. Lle migkpeciroe CKIaqHicTh TeHepamii Kooy A YMOB, ONHCAHMX HH3BKOPECYPCHOIO MOBOIO.
JlomaTkoBO TPENCTAaBICHO [ETalbHUN aHajli3 MPOAYKTUBHOCTI 3a pIBHAMH CKIQJHOCTI, a TaKOK OLHIOBaHHS YHIKAJBHOCTI
PO3B’A3KiB 1 €(h)eKTHBHOCTI 3T€HEPOBAHUX PIIIEHB, 10 OI[iHIOBAJIAcs MIBUKICTIO BUKOHAHHS Ta CIIOKUBAHHIM IaM’SITi 3TeHEPOBAHUX
mporpam. IlizcymoByroun, pobOTa JEMOHCTPYE LIHHICTH NIarHOCTHYHHUX HAOOpIB JaHUX 31 CHOPTHUBHOTO IMPOTrpaMyBaHHS IS
OILIIHIOBAaHHS BEIIMKUX MOBHUX MOJENCH, 0COOIHMBO ISl TMEPEBIPKH 3M10HOCTEH Y HU3BKOPECYPCHHUX MOBAX, 1 OKPECIIOE LUIAX 10
MOAAJBIINX JOCITIIKEHb 0araTOMOBHOI TeHEpallii Koay Ta MOJENIeH 3 MiATPUMKOI0 MipKyBaHHSL.
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