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ABSTRACT

This study examines whether multi-modal and multi-level representations enhance the reliability of code smell and anti-pattern
detection in evolving polyglot software systems. A hybrid model is introduced that integrates four evidence channels — structural,
semantic, metric, and evolutionary — within a unified Code Property Graph (CPG) combining AST, CFG, and PDG relations.
Semantic information is obtained from pretrained code language models, while classical quality indicators (e.g., CK,
McCabe/Halstead) are attached as node and edge attributes; version-control signals (e.g., churn, co-change, recency) are aggregated
with time decay to emphasize recent activity. Learning proceeds hierarchically: a local encoder summarizes token-level idioms and
induced graph slices; a component-level, relation-aware GNN captures cohesion/coupling and data/control-flow structure; and a
project-level encoder propagates context on a component-interaction graph. Instance-wise channel gating is employed to weight
modalities, thereby emphasizing source-specific and smell-specific evidence.

To support deployment under open-world conditions, selective prediction is adopted using complementary uncertainty criteria
(logit energy, predictive entropy, stochastic variance), with temperature calibration to improve probability reliability and enable
abstention on unfamiliar or low-confidence cases. The empirical evaluation spans Java, Kotlin, and Scala repositories under cross-
project and time-aware splits; open-set tests are formed by withholding one smell class during training. Relative to rule/metric
baselines, AST-GNN, text-only, and AST+Text systems, the hybrid model yields consistent improvements without increasing
FPR@95TPR. Averaged over repositories, Macro-AUPRC improves by approximately 6-7 percentage points and Macro-F1 by 3-4
points over the strongest single-view baseline, with the largest gains observed for God Class and Shotgun-Surgery-like categories.
Incremental CPG updates and bounded project-level propagation maintain ClI/CD-compatible latency, while hierarchical attention
and channel-importance scores provide reviewer-aligned explanations. The findings indicate that smells are inherently multi-signal
and context-dependent, and that hierarchical, calibrated, open-set detection offers a favorable balance between accuracy and
operational safety.

Keywords: Machine learning; software engineering; program analysis; graph models; static analysis; anti-pattern detection;
software quality; open-set recognition

The study aims to enable early, reliable detection of code smells and design anti-patterns in
rapidly evolving, polyglot software systems. Modern codebases change under continuous
integration and dependency churn, where degradation emerges gradually across local idioms,
structural dependencies, quantitative quality signals, and version-control history. However, most
existing detectors are single-channel (rules/metrics, AST-only, or text-only) and single-level
(method/file scope). As a result, they miss context-dependent cases, suffer precision-recall trade-
offs, and transfer poorly across repositories and languages [1]. Project-specific thresholds drift,
temporal evolution is often ignored and closed-set classifiers confidently mislabel previously
unseen patterns — producing noisy CI pipelines, reviewer fatigue, and inconsistent triage. To address
these shortcomings, the study aims to (i) fuse structure, semantics, metrics, and evolution into a
unified representation, (ii) reason hierarchically from local code to component and project context,
(iii) support open-set abstention with calibrated probabilities to avoid overconfident errors, and (iv)
operate incrementally so that inference remains compatible with CI/CD latency and resource
budgets [2].

The study aims to design a hybrid, multi-level model for detecting code smells and anti-
patterns that improve accuracy and reliability in polyglot, evolving codebases without
compromising CI/CD viability. The objectives are: (1) to integrate structural (AST+CFG+PDG),
semantic (code embeddings), metric (CK, McCabe/Halstead), and evolutionary features into aified
representation; (2) to enable hierarchical reasoning (local — component — project); (3) to un
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develop open-set selective prediction with calibrated probabilities; (4) to support incremental
processing of changes; and (5) to empirically evaluate effectiveness, transferability, calibration, and
efficiency [3].

Proposed model. We cast smell detection as multi-modal, multi-level learning over a hybrid
code graph that fuses structure, semantics, metrics, and evolution. Source is compiled into a Code
Property Graph (CPG) unifying syntax, control, and data flow:

G = (V,Egst UE;5 UEpay), (1)

where G is the Code Property Graph (CPG), a unified graph representation of code; V is set of
graph nodes (e.g., tokens, statements, methods, classes); E,; is edges from the Abstract Syntax Tree
(syntactic parent/child, sibling); E s, is edges from the Control Flow Graph (execution ordering/branching);
Epag is edges from the Control Flow Graph (execution ordering/branching).

On this graph, each method/class node carries four channels: (i) structural features from
AST/CFG/PDG slices; (ii) semantic vectors from a pretrained code LM (e.g., CodeBERT/CodeT5)
to capture naming and idioms; (iii) metric features (CK, McCabe/Halstead, size) normalized per
project to reduce scale effects; and (iv) evolutionary signals mined from version control (churn, co-
change, author dispersion, recency), aggregated with time decay to emphasize recent activity [4-6].

Learning proceeds hierarchically. A local encoder summarizes method-level idioms from token
sequences and their induced subgraphs. These local summaries are fed to a component encoder — a
relation-aware GNN over class-level CPG slices — to capture cohesion/coupling and data-/control-
flow regularities. A lightweight project encoder then propagates context on a component-interaction
graph (calls, imports, co-change), which is crucial for smells whose evidence is dispersed (e.g., God
Class, Shotgun-Surgery—like).

Across levels, a channel-gated fusion learns instance-specific weights, so the model emphasizes
the most informative evidence for each decision:

T

(2)

h = ||ke{str,sem,met,evo}akaxk: oy = T
Zj oW Xj

where h is fused representation fed to the higher-level encoders/classifier; k € {str, sem, met, evo}
— channel index — structure (CPG features); semantics (code embeddings); metrics (CK,
McCabe/Halstead, etc.); evolution (VCS-derived features); x; is input feature vector from channel
k for the current unit (method/class/component); W, is learnable projection matrix mapping x;, into
the shared space; a; is instance-wise gate (soft weight) for channel k; Y., @, = 1, uy is learnable
gating vector for channel k (computes the logit for «;); j is index over all channels in the
denominator (softmax normalization).

To make deployment safe in evolving repositories, the classifier is selective under open-set
conditions. We combine three complementary uncertainty signals — logit energy (confidence
margin), predictive entropy (class ambiguity), and stochastic variance (e.g., MC-dropout) — to
decide when to abstain and route a case to human review:

Lapstain = [Energy > tg] V[H > 4] V[V > 1y, 3)
where I,5sqin € {0,1} is indicator that the model abstains (1) or proceeds with a label (0); H is
predictive entropy of the class distribution p; V is stochastic variance of predictions across Monte-
Carlo dropout samples; tg, Ty, T, are tunable thresholds for energy, entropy, and variance, set on
validation to balance coverage versus risk.

Probabilities are calibrated (temperature scaling) so CI/CD thresholds behave predictably; in
practice, high scores correspond to high empirical precision [7]. The pipeline is engineered for
incremental inference: only touched files are re-indexed into CPG slices, local summaries
recomputed for changed methods, component states update within a bounded neighborhood, and
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project propagation depth is capped (e.g., one or two hops). This preserves latency budgets while
retaining the benefits of multi-signal fusion and hierarchical context. Explanations are exposed
through attention maps and channel-importance scores, aligning flagged evidence with reviewer
intuition and supporting triage and learning-from-feedback in real projects [8].

Data and experimental design. Evaluation was conducted on polyglot JVM corpora (Java,
Kotlin, Scala) collected from public repositories, comprising tens of thousands of classes and
hundreds of thousands of methods (see Table 1). Smell/anti-pattern labels were derived from a
consensus of established detectors (rules/metrics) with targeted manual audits on sampled cases.
Targets are multi-label: Long Method (LM), God Class (GC), Feature Envy (FE), Data Class (DC),
Shotgun-Surgery-like (SS), and No-smell.

Table 1. Datasets summary (per language)

Language | Repositories | Classes | Methods | Avg. LOC / method (firs thfs tsggrlmit)
Java 45 38120 | 214350 13.7 2014-2024
Kotlin 18 9480 55260 14.9 2017-2024
Scala 12 6210 36840 15.1 2015-2024
Total 75 53810 | 306450 - -

To reduce leakage, we used cross-project and time-aware splits: training on earlier
commits/projects and validation/test on later, distinct projects. Open-set conditions were simulated
by withholding one or more smell classes during training and revealing them only at test time;
cross-language transfer was assessed by training on Java and testing on Kotlin/Scala.

Baselines included rule/metric detectors, AST-GNN, text-only, and AST+Text hybrids.
Ablations removed evolution features, restricted reasoning to the local level only, or disabled
selective prediction. Primary metrics were AUPRC and F1; safety/robustness used FPR@95TPR,
AUROC-0OSR, TNR@TPR (open-set), and ECE (calibration). Hyperparameters were tuned on
validation with class-balanced batches and loss weighting. Operational viability was measured via
inference latency in Cl-like scenarios (small/medium/large pull requests) using incremental CPG
updates and capped project-level propagation depth.

Results and discussion. At the language level, the hybrid model consistently leads across Java,
Kotlin, and Scala (see Fig. 1 and Fig. 2).

Table 2. Average Macro-AUPRC (mean over repositories)

Language Rules/Metrics AST-GNN Text-only AST+Text Hybrid (Ours)
Java 0.490 0.588 0.570 0.610 0.676
Kotlin 0.507 0.592 0.581 0.625 0.698
Scala 0.508 0.599 0.595 0.629 0.696

Averaged over repositories, Macro-AUPRC gains of the Hybrid system over the strongest
single-view baseline (AST+Text) range from ~5-7 percentage points on Java and Scala to ~6-7
points on Kotlin, with corresponding Macro-F1 improvements of ~3-4 points (see Table 2 and
Table 3 for exact values).

Table 3. Average Macro-F1 (mean over repositories)

Language Rules/Metrics AST-GNN Text-only AST+Text Hybrid (Ours)
Java 0.500 0.568 0.550 0.591 0.656
Kotlin 0.500 0.571 0.559 0.609 0.682
Scala 0.503 0.579 0.577 0.609 0.678
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These margins are stable despite different language idioms and corpus sizes, indicating that
hierarchical aggregation and channel-gated fusion generalize beyond per-project specifics.
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Two effects explain the pattern. First, languages whose projects exhibit richer inter-component
interaction (notably several Java and Scala repositories) benefit most from the project-level
encoder: evidence for God Class and Shotgun-Surgery—like smells is dispersed, so propagating
context across the interaction graph reduces false positives at high recall.
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Fig. 2. Average Macro-F1 by Language (Cross-Project, Time-Aware)
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Second, repositories with higher churn and stronger co-change signals improve under the
evolution channel, which adds discriminative temporal features missing from structural or semantic
views alone. Kotlin shows slightly smaller absolute gains, consistent with more uniform idioms and
smaller median project size; nevertheless, improvements remain statistically consistent across its
repositories.

Open-set behavior is preserved at the language level: selective prediction (energy + entropy +
variance) maintains closed-set accuracy while increasing TNR@TPR on withheld-class tests,
enabling reliable confidence thresholds that map cleanly to CI policies (auto-action vs. human
review).

Overall, Fig. 1, Fig.2 and Table 2 corroborate the central claim: multi-modal, hierarchical
fusion delivers superior accuracy that transfers across languages without sacrificing operational
safety.

Practical value. The proposed model yields immediate engineering benefits. It integrates into
CI/CD as a confidence-calibrated gate, automating high-certainty cases while selective prediction
escalates uncertain findings to reviewers. Incremental processing preserves low latency for pull
requests, and hierarchical explanations (attention maps, channel weights) make alerts actionable and
teachable during code review. Cross-language transferability and per-project normalization reduce
retuning across repositories. In effect, the tool improves refactoring prioritization, cuts alert noise,
stabilizes triage policies, and measurably elevates developer productivity.

Conclusions. The proposed hybrid, multi-level model-fusing CPG structure
(AST+CFG+PDG), code semantics, classical metrics, and evolutionary signals with calibrated
open-set selectivity — consistently outperforms single-view baselines. Averaged over repositories,
Macro-AUPRC improves by +6.6 pp (Java), +7.3 pp (Kotlin), +6.7 pp (Scala) over the strongest
baseline (AST+Text), while Macro-F1 gains are +6.5 pp, +7.3 pp, +6.9 pp, respectively (see Figure
8.5-8.6 and Table 8.3a,b). These gains come without increasing FPR@95TPR; probability
calibration reduces ECE by approximately 25-30 % on validation, yielding predictable CI/CD
thresholds.

Limitations. Labels rely on consensus detectors with limited human auditing; CPG/PDG
completeness varies across languages and tools; framework/idiom drift can erode stability;
evaluation focused on the JVM ecosystem, which may constrain external validity; deployment
latencies can fluctuate with repository scale and CI policies.

Future Work. Move from detection to refactoring recommendation via counterfactual patches
and test-verified edits; develop event- and causality-aware models of smell evolution; expand
polyglot coverage (TypeScript/Go/Rust) and add modalities (tests/build telemetry); incorporate
active learning for economical re-labeling; pursue online calibration and long-horizon threshold
stabilization; study privacy/security implications of feature logging and explanation artifacts in
production.
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AHOTANIA

VY nociikeHHI OIHIOETHCS, Y MiJBHUIIYIOTH MYJIBTHMOJANIBHI Ta OaraTopiBHEBI IMOJAaHHS HAJIMHICTh BUSBIICHHS 3alraxiB
KOy 1 QHTHIATepHIiB B CBOMIOLIMHMX, MYJIbTHMOBHHX HPOTPAMHHX CHCTEMax. 3alpolOHOBAaHO TiOPHUOHY MOIENb, IO iHTErpye
YOTUPH KaHAIU JaHUX — CTPYKTYPHHIA, CEMAaHTUYHHI, METPUYHUI Ta eBomoniiauil — y eqununid Code Property Graph (CPG), sikuii
noequye 3B’s:3ku AST, CFG i PDG. CemaHTH4HI BiIOMOCTI OTPHMYIOTBCS 32 IOHOMOIOIO MONEPEIHHO HABUCHUX MOBHHUX MOJIEINei
kony; knacuuHi inaukaropu sikocti (CK, McCabe/Halstead) ¢ikcyrorbes sik arpuOyTy By3iiB i pedep; CHUrHAJIM CHCTEM KOHTPOJIIO
Bepciit (churn, Ko-3MiHH, aBHICTH) arperylOThCsl 3 YAaCOBUM 3racaHHsIM ISl ypaxyBaHHs akTyasbHOCTi. HaBuaHHS 3iHCHIOETBCS
iepapXiyHO: JIOKAJIbHUH EHKOJep IiJCYMOBYE 11iOMH Ha pIiBHI TOKeHY Ta iHAyKoBaHI rpadoBi 3pi3u; KOMIIOHCHTHHH, 3B’s3KO-
opientoBannii GNN Mofentoe KOre3ito/3B’s3yBaHHS i CTPYKTYpPY IOTOKIB IaHUX/KepYBaHHS; MPOEKTHHUN EHKOJEp IOLINPIOE
KOHTEKCT y rpadi B3aeMoOfil KOMIIOHEHTIB. EK3eMIUIIPHO-3aJ@KHHHA «TSHTIHI» KaHAJIiB BUKOPHUCTOBYETBCS Ul 3BaXKYBaHHS
MOZAJIBHOCTEH 1 MiKPECICHHS peJIeBAaHTHUX O3HAK.

JUist po3ropTaHHs y BiAKPHTHX YMOBax 3aCTOCOBAHO CEICKTHBHE MepefOadeHHs 3 BUKOPHCTAHHIM B3a€MOIOMOBHIOBATIBHUX
KpHUTEpilB HEBU3HAYCHOCTI (€Heprist JIOTITiB, EHTPOIIisl, CTOXaCTUYHA JUCIEePCis) Ta TeMIepaTypHe KauliOpyBaHHS Ul MTOKPALICHHS
JIOCTOBIPHOCTI HMOBIpHOCTE! 1 MOXKIIMBOCTI YTPUMAHHS BiJl PillIEHHsI y BUIAAKaX HU3bKOI BIIEBHEHOCTI. EMITipHUYHa OLlIHKA OXOILIIOE
penosutopii Java, Kotlin i Scala 3 Mi>XIPOEKTHUMHU Ta YaCOBHUMH PO3OHTTSIMHU; open-set TecTH (GHOPMYIOTHCS IUIIXOM yTPUMAaHHS
KJacy cMelniB mija yac HaBdanHs. [lopiBasHO 3 npaBmiamu/merpukamu, AST-GNN, tekcr-opienToBanumu ta AST+Text miaxoxamu,
ribpuana Mopens AeMOHCTpYe craliibHiI mokpauieHHs Oe3 30inbimenHs: FPR@ISTPR. V cepennbomy mo pemosuropisx Macro-
AUPRC 3pocrae npubnuszno Ha 6-7 B. 1., Macro-F1 — Ha 3-4 B. 1., 3 HaitOUTbIMMu Burpamamu aiss God Class i Shotgun-Surgery-
noaibuux kareropiit. [HkpemenrasbHi oHoBieHHs CPG i oOMeskena rimOuHa mpomarailii 3a0e3medyoTh JIaTeHTHICTb, CYMICHY 3
CI/CD, a iepapxiuHi MOSICHEHHsS Ta Bard KaHAIB HAJAIOTh IHTEPIPETOBaHICTh. Pe3ynmpTaTé CBiAYaTh Mpo OaraTOCHTHAIbHY,
KOHTEKCTHY IPHPO/TY 3amaxiB i eheKTUBHICTH i€papXiuHOro, KaxiOpoBaHOro, open-set miaxomy.

KiouoBi ciioBa: MaliMHHE HABYAaHHS, MPOrpaMHa IHXKEHepis; aHami3 mporpam; rpadoBi MoOelni; CTaTUYHHN aHami3;
BUSIBIICHHS aHTUIIATEPHIB; SKICTh MPOrPaMHOI0 3a0e3MeueHHsI; BIAKPUTI MHOKHHU
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