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ABSTRACT

Skeleton-based human action recognition (HAR) suffers from poor external validity because popular datasets adopt
incompatible joint schemas (e.g., COCO-17, NTU-25/26), forcing ad-hoc remapping, joint dropping, or multiple dataset-specific
input heads. We present Schema-Align, a lightweight, model-agnostic unifier that canonicalizes poses from arbitrary source schemas
into a fixed 21-joint representation using a row-sparse linear mapping regularized by kinematic feasibility (bone-length and joint-
angle constraints) and a low-capacity temporal residual to interpolate truly missing joints. The unifier is pretrained without action
labels on mixed pose streams via cycle consistency, temporal predictability, and confidence-weighted losses, then plugged before any
HAR backbone (GCN/MSG3D/CTR-GCN/Transformer) with negligible latency (<1%).

We evaluate on NTU RGB+D 60/120 (3D), Kinetics-Skeleton, HMDB51-/UCF101-Skeleton, and PoseTrack (2D), covering
schema, dataset, and detector shifts. In in-domain protocols, canonicalization is effectively lossless, matching native performance
across backbones. In cross-dataset transfer, Schema-Align consistently reduces accuracy drop relative to intersect-and-pad and dense
linear remaps, and outperforms dataset-specific heads, particularly when the source and target schemas diverge (e.g., COCO—NTU).
Beyond accuracy, the method improves calibration (lower ECE) and anatomical plausibility (fewer bone/angle violations), indicating
that physically informed canonicalization yields more reliable features under shift.

Ablations show that top-k row sparsity (k=1-2) prevents overfitting to schema idiosyncrasies; the residual interpolator aids
occluded or detector-noisy frames at minimal parameter cost; and removing kinematic losses degrades both realism and transfer.
With a single thin matrix multiply and a tiny temporal module, Schema-Align provides a practical, interpretable path to train-once,
evaluate-anywhere HAR.

Keywords: Machine learning; deep learning; computer vision; action recognition; pose analysis; video surveillance; data
unification; transfer learning

Introduction. Skeleton-based human action recognition (HAR) has advanced rapidly due to
robust 2D/3D pose estimators and graph-centric backbones (e.g., GCNs, transformers over joints).
Yet, a persistent obstacle limits external validity: heterogeneity of joint schemas across datasets.
Popular corpora such as Kinetics-Skeleton, NTU-RGBD, PoseTrack, UCF-Skeleton, and HMDB-
Skeleton adopt incompatible joint sets and topologies — e.g., COCO-17 vs. NTU-25 differ in the
presence/absence of specific joints (e.g., clavicles, mid-hip), indexing, limb partitioning, and edge
definitions. As a consequence, models trained on one dataset often require bespoke input “heads” or
re-training with dataset-specific preprocessing, reducing reuse, hindering transfer, and complicating
fair comparison [1].

Existing work addresses domain shift via normalization, temporal augmentation, view-
invariance, or skeleton completion, but typically assumes a fixed joint schema. When schemas
differ, practitioners resort to ad-hoc mapping scripts, manual joint dropping, or architecture forks.
These practices (i) discard informative cues (lost joints), (ii) inject bias (hand-crafted rules), and
(iii) fracture training pipelines (multiple heads, duplicated weights). Moreover, naive imputation of
missing joints ignores human kinematics (bone lengths, joint angle feasibility), which leads to
anatomically implausible poses and degrades downstream recognition [2].

We introduce Schema-Align, a lightweight, plug-in unifier that maps arbitrary source schemas
to a canonical joint set via a sparse linear operator with kinematic regularization and feasible-pose
interpolation for absent joints. The module is training-friendly (few parameters), model-
agnostic(prepends any HAR backbone), and data-efficient (learned on pose streams without labels).
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By aligning heterogeneous schemas into a single canonical representation, Schema-Align enables
train-once, evaluate-anywhere regimes and strengthens cross-dataset generalization without
proliferating dataset-specific heads [3].

Proposed method. Let S denote a skeleton schema defined by a joint set / and edges E

(kinematic tree). Consider a source dataset D) with schema S = (J&),E®)), and a target

canonical schema S(© = (J(©), E©). For a sequence of poses X\,
coordinates X € RV (with d = 2 or 3).

We seek a learned, sparse, linear unifier

each frame t contains joint

X9 =W @I XS +0(x%,,..), (1)

sparse

where W € RV XU/l s a row-sparse mapping that selects/blends source joints for each canonical
joint, 1, is the d x d identity, and ®(-) is an optional low-capacity interpolator (e.g., per-joint linear
RNN or temporal FIR) used only when canonical joints are absent in the source schema and must
be inferred from local spatiotemporal context [4].

To ensure anatomical plausibility, we impose kinematic constraints on the mapped poses:

« Bone-length consistency: for canonical bones (u,v) € E© with nominal lengths 1,
(estimated from training data or anthropometric priors), enforce

b= Y (%00 - xOW)| ~1)" @

(u,v)eE©)

« Angle feasibility (soft): for triplets (a, b,c) forming canonical joints, penalize deviations
outside feasible ranges [6,,in, Omax] Via a barrier or hinge:

Langte = z max (0, 6,,in — Oape) + Max(0, 0pc — Opgy)- (3)
(a,b,c)

« Sparsity/identifiability: encourage interpretable, non-redundant mappings

Lsparse = ”Wlll (4)

The total objective for learning W and (if used) @ on unlabeled pose streams combines
reconstruction and kinematics:

2
)

(5)

ral/ldp IEt [Lrecon + AlLbone + AZLangle + /13Lsparse]: Lrecon = ||Xt(C) - Xt(C) 2

where )?t(c) is a self-supervised target (e.g., cycle-consistency via inverse mapping to S, temporal
smoothing priors, or multi-view agreement if available). In practice, we adopt a simple
canonicalizer: fix S(©, initialize W with nearest-joint matches, and train with temporal windows to
stabilize ®.

<)

At inference, any HAR backbone f, consumes the canonicalized stream Xl(_T and outputs class
posteriors p(y|X1(fT)). Critically, the backbone is schema-agnostic; all dataset heterogeneity is
absorbed by Schema-Align.

This yields the following cross-dataset objective:

Max E(x ) pe logpo (y|Align(X(S) W, q))), (6)
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with evaluation on D® drawn from a different schema S(®. Baselines include: (i) dataset-specific
heads (no unifier), (ii) naive joint dropping/padding, and (iii) dense linear remapping without
kinematics. Target metrics cover top-1/top-5 accuracy, cross-dataset drop, calibration (ECE), and
anatomical scores (bone/angle violations). Computationally, Schema-Align add O([J©©|[J®])
parameters (typically a few thousand) and negligible latency relative to the HAR backbone,
preserving practical deployability in automated video surveillance pipelines [5].

Data and Experimental Design. We evaluate Schema-Align on open benchmarks that
deliberately span heterogeneous joint schemas, sensing modalities, and capture conditions to ensure
both reproducibility and external validity. Specifically, we use NTU RGB+D 60/120 (3D mocap
skeletons with 25/26 joints and multi-view setups) [6], Kinetics-Skeleton (2D skeletons derived
from Kinetics with the COCO-17 schema) [7], HMDB51-Skeleton and UCF101-Skeleton (2D
poses extracted from the canonical action datasets) [8], and PoseTrack 2017/2018 (2D multi-person
tracks under frequent occlusions) [9]. Where multiple pose detectors are available (e.g., OpenPose,
AlphaPose, HRNet-based), we retain detector provenance to test cross-detector robustness. For
clarity and compactness, a concise inventory of datasets, native schemas, and splits can be
summarized in Table 1.

Table 1. Datasets summary

Train/Test

Dataset Dim Native joints/schema . Notes
split used
[\é}'UGO /NTU120 3D | 25/26 (NTU) izgtb xview/ Also evaluated in 2D projection

Kinetics-Skeleton standard

(KA00/K600) [7] 2D | 17 (COCO) train/val Multiple detectors where available

HMDB51-Skel / . . -
UCF101-Skel [8] 2D | 17 (COCO variants) 3 splits (avg) | OpenPose/AlphaPose derivations

PoseTrack

2017/2018 [9] 2D | 17 (COCO) val/test Converted to per-person tracks

Before any backbone training, all pose streams are converted to a uniform representation. Each
sequence is temporally standardized by uniform sampling to a fixed length T (longer clips are
strided; shorter ones are mask-padded). Per frame ¢, the joint set X, € R/*¢ (with optional
confidences c, € [0,1]/) is root-centered at Mid-Hip and isotropically scaled by the pelvis—neck
distance (unit-torso normalization). This yields translation/scale invariance while preserving in-
plane orientation for 2D and absolute orientation for 3D. The canonicalization step then applies

Schema-Align to produce a 21-joint canonical skeleton Xl(CT) using identical per-channel operators
for 2D and 3D; angle feasibility ranges are widened in 2D to accommodate foreshortening.
Confidence scores, when present, weight reconstruction and kinematic losses during Schema-Align
pretraining.

Our experimental design is structured to expose three distinct sources of shift: schema shift
(mismatched joint sets), dataset shift (content/domain changes), and detector shift (different pose
extractors). We therefore report (i) in-domain results — training and testing within the same dataset
after canonicalization — to quantify any overhead introduced by Schema-Align; (ii) cross-dataset
transfer — training on dataset A and evaluating on B without seeing B’s labels (e.g., Kinetics-
Skeleton—NTU60 and the reverse) — to probe generalization across schemas and content; and (iii)
cross-detector tests — training on skeletons extracted by one detector and evaluating on the same
videos processed by another — to isolate sensitivity to the upstream pose estimator. A compact view
of these protocols can be provided in Table 2.

To disentangle the contribution of each component, we compare against representative
baselines under identical backbones (ST-GCN [10], CTR-GCN [11], MSG3D [12] and a ViT-style
joints-Transformer [13]). Baselines include: dataset-specific input heads (one per schema), naive
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intersect-and-pad remapping, a dense linear map without sparsity or kinematic constraints, and a
hand-crafted graph rewiring. Schema-Align is evaluated both frozen (to isolate the value of
canonicalization) and jointly fine-tuned with the backbone. All models are trained with three
random seeds; we report mean + standard deviation.

Table 2. Experimental protocols

Protocol Purpose Train — Test Uses labels of Test?
ID In-domain sanity A— A Yes
CD-A—B | Cross-dataset transfer A—B No
CDet Cross-detector shift Detector D1 — D2 No
Sch-Abl Schema stress (prune/augment) A’ (altered) — A Yes (A)

Schema-Align is first pretrained without action labels on mixed pose streams pooled from all
datasets, optimizing cycle consistency, temporal predictability, and kinematic plausibility with row-
sparse W (top-k pruning) and a low-capacity residual interpolator @ for missing joints. During this
phase we apply schema dropout — randomly hiding source joints — to simulate partial detections and
improve resilience to keypoint dropouts. Backbone training then proceeds with standard cross-
entropy; unless otherwise stated, Schema-Align remains frozen, and a fine-tune variant unfreezes W
and @ with a reduced learning rate. Implementation details (optimizers, schedules, batch sizes,
pruning schedules) follow widely used settings; hardware throughput and latency are reported on
both a datacenter GPU and a commodity GPU to reflect deployment realities.

Evaluation emphasizes not only recognition accuracy but also calibration, anatomical
plausibility, robustness, and compute cost. We therefore report Top-1/Top-5 accuracy for in-domain
and cross-dataset settings; the transfer drop Aacc (difference between in-domain and cross-dataset
accuracy); ECE for confidence calibration; the fraction of bone-length and joint-angle violations to
quantify kinematic realism; and end-to-end latency, parameter overhead, and FLOPs attributable to
Schema-Align. Stress tests include Missing-k (randomly drop k joints), Noise-o (Gaussian jitter
proportional to bone length), synthetic schema perturbations (remove/merge specific joints to
emulate unseen schemas), and cross-detector swaps (e.g., OpenPose— AlphaPose).

Finally, to support reproducibility, we fix and release random seeds, train/validation indices for
each split, normalization constants, the learned sparsity masks of W, angle bounds (2D/3D), and
scripts that reproduce (i) label-free pretraining of Schema-Align, (ii) backbone training with and
without fine-tuning, and (iii) all ablations and stress tests. Where licenses allow, we redistribute
skeleton coordinates and confidences rather than raw video frames.

Results and discussion. In-domain accuracy. Canonicalization with Schema-Align does not
harm ID performance. For ST-GCN on NTU60-xsub, Top-1 is 86.5+0.3% (frozen) and 86.8+0.3%
(fine-tuned) versus 86.4+0.3% for native inputs; similar “within-noise” behavior holds across CTR-
GCN (NTU120-xset), MSG3D (K400-val), and the Transformer (HMDB51) (see Table 3). These
results indicate the unifier is effectively lossless in-domain while standardizing inputs.

Cross-dataset transfer. Under schema and content shift, Schema-Align consistently improves
transfer. On Kinetics—>NTU60 with ST-GCN, Top-1 rises from 61.6% (Dense-Lin) and 58.9%
(DropPad) to 66.1% with fine-tuned Schema-Align, shrinking the transfer drop Aacc from
24.8—20.4 pp (—4.4 pp) relative to Dense-Lin (see Table 4). Similar gains appear on
NTU60—HMDBS51 (+3.4 pp over Dense-Lin; Aacc 22.2—18.8), NTU120—UCF101 with CTR-
GCN (+2.3 pp; Aacc 4.1—1.8), and Kinetics—PoseTrack with the Transformer (+3.9 pp; Aacc
30.5—26.6). Notably, even the frozen unifier delivers meaningful gains (e.g., 64.9% on
Kinetics—>NTUG60), confirming that most benefits come from schema-aware canonicalization rather
than extra capacity.

Calibration and anatomical plausibility. Improvements are not limited to accuracy. Averaged
across CD runs, Schema-Align reduces ECE to 5.8 % (vs. 7.1% Dense-Lin, 8.9 % DropPad), and
cuts bone-length/angle violations to 3.9 % / 5.4 % (from 7.2 % / 8.6 % with Dense-Lin and 9.7 % /
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11.5 % with DropPad), indicating more trustworthy probabilities and more anatomically consistent

poses (Table 5).
Table 3. Datasets summary
Baseline . Schema-Align | Schema-Align
Backbone Dataset (native) Dense-Lin DropPad (frozen) (fine-tune)
ST-GCN [10] |[NTU60-xsub (86.4 + 0.3 /|86.1 + 0.4 /|85.7 £ 0.5 /|86.5 + 0.3 /|86.8 + 0.3 /
96.8+0.1 (96.6+0.2 (96.3+0.2 |96.8+0.2 [96.9+0.2
CTR-GCN  |NTU120-xset [83.1 + 0.4 /|82.8 £ 0.5 /|82.3 £+ 0.6 /|83.2 + 0.4 /|83.6 £ 0.3 /
[11] 95.2+0.2 |[95.0+0.2 |948+03 |952+0.2 (954+0.2
MSG3D [12] [K400-val 379 + 0.3 /|37.6 + 0.4 /|37.2 + 0.5 /379 £ 0.3 /|383 + 0.3 /
604+03 |60.0+04 [59.6+04 [60.5+0.3 [60.9+0.3
Transformer |HMDB51 74.2 + 0.7 /|73.6 £ 0.8 /|73.1 £ 0.8 /|74.3 + 0.6 /|[749 = 0.6 /
[13] (avg 3 splits) |93.5+0.3 |93.1+04 (92.7+0.4 [93.6+0.3 [93.9+0.3
Table 4. Datasets summary
Backbone Train — Test | DS-Heads | DropPad Dir)se- Schema-Align | Schema-Align
in (frozen) (fine-tune)
ST-GCN [10] | Kinetics — 60.8 58.9 61.6
NTU60 (A25.6) | (A27.5) | (a24.8) | 6% (A21.6) | 66.1(A20.4)
ST-GCN [10] | NTU60 — 63.7 61.9 64.2
HMDBS51 (A22.7) | (A24.5) | (a222) | 66-8(A19-6) | 67.6(AI88)
CTR-GCN NTU120 — 78.5 77.1 79.0
[11] UCF101 A46) | (26.0) | (a41y | 80-6(425) | 8L3(ALS)
Transformer | Kinetics — 42.9 40.1 43.7
[13] PoseTrack (A313) | (A34.1) | (a305) | 468 (A274) | 47.6(A26.6)
Table 5. Datasets summary
Metric DS-Heads DropPad Dense-Lin Schema-Align
ECE (]) 7.6 % 8.9 % 7.1 % 58 %
Bone-length violations () 6.4 % 9.7 % 7.2% 3.9%
Angle violations () 8.1 % 11.5% 8.6 % 5.4 %
Latency overhead (|) - +0.3 % +0.5 % +0.7 %
Params overhead () — 0K 12K <18K

These effects align with our design: row-sparse mapping curbs overfitting to schema quirks,
while kinematic losses steer reconstructions toward feasible human poses — both of which help
downstream classification under shift.

Overhead and practicality. The unifier adds <0.7 % latency and <18K parameters (Table 5),
which is negligible relative to typical backbones. Combined with the ID-neutral results (Table 3)
and the CD gains (Table 4), this makes Schema-Align attractive for real-time surveillance pipelines
that must tolerate changing pose extractors and annotation schemas.

Ablations and failure modes (summary). Row-sparse (W) with top-k=1-2 vyields the best
transfer (Table R2 trends), while a tiny RNN residual can add +0.3-0.7 pp on occluded clips at a
modest param cost (reflected in the small overhead of Table 5). Failures concentrate in extreme or
contorted poses and under severe 2D foreshortening, where relaxed angle bounds provide less
guidance; nevertheless, Schema-Align still maintains better Aacc than baselines in these regimes

(Table 4).

Conclusions and Future Work. This work introduced Schema-Align, a lightweight, model-
agnostic unifier that resolves joint-schema mismatch across skeleton datasets through a row-sparse
linear mapping augmented with kinematics-aware regularization and a low-capacity residual
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interpolator. Extensive experiments show that canonicalization is effectively lossless in-domain
while consistently improving cross-dataset transfer, reducing calibration error, and lowering
anatomical violations — at sub-1 % latency and a parameter footprint of only tens of thousands.
Compared with intersect-and-pad heuristics, dense linear remaps, and dataset-specific input heads,
Schema-Align offers a principled, interpretable, and reproducible way to train once and evaluate
anywhere without proliferating dataset-specific code paths. These findings suggest that physically
informed canonicalization of poses is a strong prior for skeleton-based HAR, yielding practical
benefits in surveillance pipelines where detector choice, capture setup, and annotation schema vary
over time.

Limitations. Performance can dip for extreme or contorted poses, unusual body proportions,
and heavy occlusion where 2D angle bounds must be relaxed; detector artifacts (e.g., limb swaps)
may still propagate unless filtered upstream. The fixed canonical schema, while broadly compatible,
may not be optimal for every action class or population, and our residual interpolator deliberately
trades capacity for stability and interpretability.

Future Work. We will pursue adaptive canonical schemas, learning a small repertoire and
routing sequences dynamically — or discovering a data-driven canonicalization under sparsity and
kinematic priors. Next, we’ll explore joint end-to-end training of the unifier and backbone with
strict regularization to retain interpretability and avoid capacity creep. An uncertainty-aware
mapping will integrate per-joint confidence and aleatoric/epistemic uncertainty to down-weight
unreliable keypoints and improve calibration. To curb upstream failures, we’ll add detector-
robustness mechanisms: limb-swap detection, temporal consistency checks, and cross-detector
agreement losses. With depth, we will enforce 3D-first constraints (rigid/weak-perspective) and
learn subject-specific bone priors for higher anatomical fidelity. We’ll extend to open-world
schemas and devices (wearables, RGB-D phones) via synthetic schema perturbations and
incremental updates to . Beyond action recognition, we’ll test task generalization to localization,
gestures, anomaly detection, and HOI. Finally, we’ll strengthen reproducibility by releasing
standardized shift suites (schema/dataset/detector) and stressors (Missing-k, Noise-o).

Overall, Schema-Align demonstrates that a compact, kinematics-aware canonicalization layer
can harmonize heterogeneous pose representations without architectural rewrites, improving
generalization and reliability in real-world, multi-dataset settings while keeping compute budgets
intact.
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AHOTANIA

Po3mizHaBaHHs JFOICHKHUX il HA OCHOBI CKEJIETY CTPa)<JIa€ BiJ HU3bKOI 30BHILIHBOI BAJIIHOCTI, OCKUJIbKH MOMYIISIPHI HA00pH
JaHUX BUKOPHCTOBYIOTH HecyMicHi cxemu cyrno6iB (nampukiag, COCO-17, NTU-25/26), mo npu3BomuTh A0 HEOOXiJHOCTI
CIEL[iabHOr0 PEMAITHTY, BHIYYEHHS CYrjo0iB ab0 BUKOPHCTaHHS IEKUIBKOX BXiJHUX «TOJIB» yBaru, creuu(iyHux it Habopy
nanux. B paniit poboti OyB mpezacraeieHuil jerkuii yHidikaTop miarnocruku moxeneid Schema-Align, sikuil mepeTBOpPIOE MO3M 3
JOBIIBHUX BHXITHUX cxeM y (ikcoBane 21-cyrio0oBe IpelCTaBICHHs, BUKOPUCTOBYIOUM pO3pi/KEHE IO psiaKax JiiHiiHe
BiJOOpaXKEHHs, PEry/IsIpu30oBaHe KiHEMATHYHOIO JIOLIBHICTIO (OOMEXEHHsS JOBXHUHHM KICTOK 1 Kyra Haxwily cyrioba) i
MAJIOMOTY)KHUM THMYaCOBHM 3aJIMIIKOM [UIsl iHTepHousiuii aificHO BiACyTHIX cyriio0iB. YHiikaTop momepeqHbo HaBYaeThes Oe3
MITOK [Ii}i Ha 3MIIIAaHKX MTOTOKAX 1103 3a JOMOMOrO0 MOCIIIOBHOCTI LIMKJIiB, 4aCOBOT Mepe10auyBaHOCTI Ta JOBi pUO-3BayKCHUX BTPAT,
a noTiM migkimoyaerses 10 oyap-saxoi Moneni HAR (GCN/MSG3D/CTR-GCN/Transformer) 3 He3Ha4HOO 3aTpUMKOIO (<1%).

Vuidikarop Oy omiHenuii Ha HaGopax NTU RGB+D 60/120 (3D), Kinetics-Skeleton, HMDB51-/UCF101-Skeleton i
PoseTrack (2D), oxommoroun cxemy, Habip AaHMX 1 3CYyBH JeTeKTopa. Y BHYTPIIIHBOJOMEHHHX MPOTOKONAX IMEPETBOPCHHS
e(eKTUBHO BHKOHYETHCsS Oe3 BTpaT, LIO BiAMOBifa€ BIACHiM MpoayKTUBHOCTI Marictpaneit. [Ipu mepemaui Mixk Habopamu JaHUX
Schema-Align nociIoBHO 3MEHIIyE MaJiHHS TOYHOCTI MOPIBHSHO 3 TMEPEXPECHUM Ta IIUIBHUM JIHIHHUM peManaMH, a TaKox
nepeBepiye crneuudiuni a1s HAOOpy DaHUX TOJOBH, OCOOJMBO KOJM BHXIZHA Ta IJIbOBA CXEMH PO3XOAATHhCS (HAIPHKIAI,
COCO«+-NTU). OxpiMm TouyHOCTi, MeToA MOKpainye kamiOpyBauus (Hmwxuuii ECE) Ta anaromiuny npaBmomomiOHICTh (MeHIIe
MOPYIIEHb KiCTOK/KYTiB), 10 BKa3ye Ha Te, o (i3u4HO 0OIpyHTOBaHE MEePEeTBOPEHHs a€ OiTbI HATiiHI 03HAKHU TPH 3CYBI.

JlocimipKeHHsT TOKa3yioTh, M0 po3pimkeHicTh BepxHiX k psaiB (k=1-2) 3amobirae HagMipHOMY MPUCTOCYBAHHIO 10 CXEMH;
3aJIMIIKOBUI IHTEPIONATOP JOMOMAra€ OKIIOZOBaHMM a0 3allyMJICHHMM JETeKTOPOM KaapaM MpH MiHIMAIbHHX BUTpaTax Ha
rapaMeTpH; a BUJAJICHHS KIHEMaTHYHHX BTPAT IOTIpIIye PEaliCTUYHICTh 1 Tepefady. 3aBISKA €AUHOMY TOHKOMY MAaTPHIHOMY
MHOKEHHIO 1 HEBEJIMKOMY 4YacOBOMY MOAymo, Schema-Align 3a0e3neuye npakTUYHNUHN, IHTEPIPETOBAHUH IIUISAX 10 HABYAHHS — OJUH
pas, ominol — 6yas-1e HAR.

KurouoBi cioBa: MamHHE HaBYaHHS; TJIMOWHHE HABYAHHSA; KOMIT IOTEpHHH 3ip; pO3Mi3HABaHHS Jid; aHami3 T03;
BiJICOCTIOCTEPEKEHHS; YHi(DiKallisl TaHUX; IEPEHOC HABUAHHS
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