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ABSTRACT

In modern distributed computing systems, architectures incorporating multiple servers and operation queues facilitate the
management of heterogeneous resource-intensive workloads, such as artificial intelligence training, media file transcoding, and
computational modeling for industrial optimization. Traditional single-processor systems are characterized by sequential constraints
and inefficient resource allocation, whereas parallelism in multiserver configurations results in elevated energy consumption. The
present study enhances the Dispatcher-Deployer-Executor (DDE) architecture for real-time resource consumption optimization in
multiprocessor environments. The objective is to improve operation execution speed and minimize execution costs in scenarios
requiring limited computational volumes and maximum parallelism. Through theoretical modeling and empirical verification, the
extended DDE introduces a container mode for Deployer/Executor components, which operate within containers, enabling
orchestration for short-term leasing via standard tools (e.g., Docker and Kubernetes). This implements dynamic resource scaling and
efficient application of the model and method in cloud environments, with the primary advantage of rapid access to high-
performance computations accompanied by substantial savings, as it eliminates the need for server acquisition or long-term leasing
for restricted calculation volumes. The main application scenario is tasks oriented towards the central processing unit (CPU), as
containers are optimized for CPU-bound computations, such as calculating the trajectories of dust particles through numerical
solution of differential equations of motion. The results indicate a significant reduction in resource consumption and financial costs
compared to the baseline mode while maintaining performance; quick rental of containers provides an advantage in cost savings and
flexibility. The extended DDE contributes to sustainable computations, balancing efficiency, reliability, and speed for various tasks.
Future extensions may integrate the use of standby mode and hibernation to reduce energy consumption.

Keywords: Multi-server architecture; energy optimization; heterogeneous workloads; DDE framework; task queuing; server
state management; Docker; Kubernetes

Relevance. In modern computational systems, operation queues and multi-server
configurations play a key role in resource management and handling large task volumes [1]. Multi-
server structures distribute tasks across nodes for parallel execution, which increases throughput
and reduces waiting time compared to single-computer processing. The growing resource demands
of tasks, such as audio/video conversion, artificial intelligence training, and industrial equipment
optimization, require method adaptation in multi-task environments [2, 3], with attention to short-
term resource leasing and high server costs. Prior work proposed an optimization method for
computations in dust particle flow modeling to reduce time through parallelization, but for final
calculations, high precision is required, and server clusters process slowly, necessitating solutions.
The shift to containerization of the model and method is driven by the need for greater flexibility in
distributed environments: containers enable dynamic resource scaling without server purchase,
providing quick leasing for limited computations and lowering costs while maintaining
performance. This approach integrates a dispatcher for load monitoring, considering task
heterogeneity, which improves distribution and real-time resource use [4, 5]. The basis lies in
analyzing the balance between reliability, speed, and flexibility, with focus on containerization of
components (Deployer, Executor) and dispatcher integration for load control accounting for
heterogeneity.

Research Objective. The objective of the present study is to refine the model and method for
enhancing the efficiency of processing operation queues at maximum server equipment load [6] for
the optimization of containerization in multi-core systems during the execution of heterogeneous
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tasks, including artificial intelligence model training, audio/video conversion, and industrial
equipment optimization, without compromising performance. Associated tasks include: refinement
of the component containerization mechanism; integration of a dispatcher for load monitoring with
dynamic scaling; optimization and analysis of container activation based on task execution time and
executor states.

The research employs a combined theoretical and empirical methodology for updating the
Dispatcher-Deployer-Executor (DDE) architecture[7], with an emphasis on real-time
containerization improvement. The theoretical part involves creating a mathematical model that
details container states, resource use, and task completion times under changing load levels. The
empirical part consists of software development in the Rust language[8] with the asynchronous
Tokio framework, along with tests on varied computational tasks. Container transitions are set using
idle time thresholds, taking into account task length, queue size, and switch duration.
Containerization improvement includes task grouping by resource needs.
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Fig. 1. Diagram of the interaction of system components:
Executor, Dispatcher, and Deployer

Within the Dispatcher-Deployer-Executor (DDE) framework, procedures are set for queue
management under high load in parallel systems. The dispatcher controls request assignment by
complexity and load, and serves as a reverse proxy for HTTP/2 [9, 10] multiplexing. The deployer
launches executors, and requests to it are directed through the dispatcher. The executor carries out
tasks directly. Use of modified HTTP/2 with server-started requests in a reverse REST-API setup
allows asynchronous work without polling.

Chunked authentication employing HMAC signatures is utilized to verify data segments within
trusted networks. The TLS 1.3 [11] protocol is implemented for unsecured channels, incorporating
1-RTT handshake, O-RTT resumption, and forward secrecy. The dispatcher incorporates SSL
certificate pinning and dynamic certificates for mutual TLS (mTLS), supported by two-factor
authentication comprising a code and public key, with a validity period of one month and automatic
renewal. The system is implemented in the Rust programming language utilizing the Tokio
asynchronous runtime to achieve high performance and security. A hybrid approach is adopted:
TLS for external communications and chunked authentication for local networks. The dispatcher is
capable of invoking webhooks to initiate and terminate containers following resource provisioning
in cloud environments.
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Container preparation within the DDE architecture involves configuring the deployer and
executor as standard components with the containerization mode enabled. This configuration mode,
activated upon system startup, initiates systematic measurement of operation execution metrics on
the executor nodes. Specifically, it enables real-time profiling of task durations, resource utilization
patterns, and throughput rates during execution phases. These measurements are aggregated and
analyzed to inform adaptive load distribution strategies, ensuring equitable allocation of
computational tasks across containerized instances [12]. By quantifying execution profiles, such as
average processing time per task type, peak memory consumption, and CPU cycle efficiency, the
system refines scheduling algorithms to minimize bottlenecks and optimize resource provisioning.
This approach facilitates predictive scaling in dynamic environments, where heterogeneous
workloads vary in complexity, thereby enhancing overall system responsiveness and efficiency
without requiring manual intervention.

Short-term container leasing provides economic efficiency by charging only for actual resource
usage, excluding costs for acquiring and maintaining proprietary servers. For tasks with uneven
load, such as one-time dust particle trajectory computations, this reduces total expenses, as the user
pays for hours or minutes rather than permanent infrastructure [13]. For instance, in cloud platforms
like AWS [14] or Google Cloud [15], the cost of leasing a container for 1 hour ranges from
approximately 0.1-0.5 USD depending on configuration, compared to capital expenditures on a
server. This promotes flexibility, enabling resource scaling for peak loads without overpayments,
and lowers entry barriers for small businesses or research projects. It supports features like
application isolation, IAM (ldentity and Access Management) roles, automated patching, encrypted
storage, and AWS security integrations, with pay-as-you-go pricing for efficient resource
utilization. ECS (Elastic Container Service) operates by deploying, managing, and scaling
containerized applications, integrating with EC2 (Elastic Compute Cloud), Fargate, and Spot
Instances for batch workloads, data processing.

For system capability demonstration, particularly in operation queue processing context,
numerical computation of dust particle trajectories in a rectangular cross-section channel accounting
for secondary flows is implemented. Mathematical models of secondary flows are applied for
particle trajectory calculation in gas flows, which is significant for gas turbine systems, boilers, and
industrial gas pipelines. Numerical modeling enables analysis of particle distribution, their
deposition on surfaces, and the impact of secondary vortex flows induced by channel geometry.
This facilitates channel design optimization to minimize contamination, enhance reliability, safety,
and environmental sustainability of systems. Particle trajectory calculation is based on solving
motion differential equations considering inertial forces and aerodynamic drag in primary and
secondary gas flows. Particles are modeled as spherical objects, with their motion described by a
system of first-order ordinary differential equations, solved using the Runge-Kutta-Fehlberg method
of 4-5th order with adaptive integration step selection. Obtained results serve as a basis for selecting
optimal channel cross-section dimensions, reducing deposit accumulation, and decreasing
maintenance frequency, contributing to resource savings and equipment service life extension.

Experimental results. Empirical evaluations were performed on a leased cluster comprising
10 AWS EC2 m7a.4xlarge instances, each equipped with fourth-generation AMD EPYC processors
operating at up to 3.7 GHz all-core turbo frequency, 16 virtual CPUs, and 64 GiB of memory. The
tasks involved a single series of computations for particle trajectories within square channels. The
dispatcher partitioned the workload into subtasks and initiated activations as required.

For identical computations, the execution time on the leased cluster comprising 10 instances
was 374s, in contrast to 941s on the local cluster of 4 instances with equivalent configurations;
central processing units exhibited 100% utilization in both scenarios, indicating enhanced
computational efficiency through increased parallelism under constrained expenditures; upon
completion of the experiments, containers were deprovisioned. In comparison with the local cluster
of 4 instances (with equivalent configurations), the local arrangement is suitable for preliminary
experiments and validation procedures, whereas cloud leasing is advantageous for extensive
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computations, as leasing 10 instances for 2h incurs costs of approximately 1-2 USD (configuration-
dependent), in contrast to the substantial expenses associated with procuring or configuring
additional servers locally.
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Fig. 2. Distribution of dust particles across the pipe cross-section at a
distance of 10 m from the pipe entrance

Conclusion. Experimental results confirm the efficiency of the proposed approach,
highlighting the utilization of short-term container leasing at low cost. Within the particle dynamics
framework, the approach supports parallel processing while mitigating operational expenditures.
Limitations encompass dependence on solid-state drives, fixed threshold parameters and 0.5 %
overhead from TLS/HMAC protocols. The system demonstrates compatibility with dynamic scaling
in AWS and Google Cloud environments, applicable to artificial intelligence, multimedia
processing, and modeling tasks, thereby facilitating data center cost reductions. The principal
finding underscores the utilization of short-term container leasing at low cost, enabling dynamic
resource allocation under constrained financial and infrastructural conditions without performance
loss in multi-server systems. Modifications to container management address challenges of
heterogeneous workloads. Experiments validate the approach, enhancing throughput. Future
developments may include the implementation of hibernation and sleep modes for energy saving
and integration with edge computing to improve efficiency. The framework advances sustainable
practices in distributed computational environments.
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AHOTAIIS

VY cydacHHX pO3NOIICHNX OOYMCIIOBAJIBHUX CHCTEMax apXiTeKTypH 3 KUIBKOMa CepBepaMH Ta dYepraMu OIeparii
3a0e3MeuyroTh YIPaBIiHHS TeTepPOreHHUMH PeCcypco3aTpaTHIMH HABAaHTA)KEHHSMHM, TaKUMU SK HAaBYAHHS INTYYHOTO IHTEJEKTY,
TPaHCKOAYBaHHA MemiadaifiiiB Ta OOYHCIIOBAaTbHE MOJETIOBAHHS JUIsS TPOMUCIOBOI onTuMizamii. TpamumiiiHi OIXHOIPOIECOpPHi
CHCTEMH XapaKTepPH3YIOThCS IOCIIZOBHUMH OOMEXEHHSIMH Ta HEee(EeKTUBHHM pO3IOIIJIOM PECypCiB, TOINI SIK MapajelisMm y
MYJIBTHCEPBEPHUX KOHDIrypamisx IpH3BOIUTE IO IiIBHIIEHOTO €HEPTOCIOKUBAHHA. JlaHe TOCIiKEHHS YJOCKOHAIIIOE apXiTeKTypy
Dispatcher-Deployer-Executor (DDE) s ontumizamii  pecypcoCHOXHMBaHHS B PEAIbHOMY 4Yaci B  MYJIBTHIIPOLECOPHUX
cepenoBumax. Mera moJsrae B IMiJBHUINCHHI IIBUIKOAI] BUKOHAHHS ONEpalliid Ta MiHIMi3amii BapTOCTI BUKOHAHHS JUIS BUIAJIKIB,
KOJIM TIOTpiOHA HEBENWKa KUIBKICTh OOYMCIEHb Ta MaKCHMAJIBbHHUN IapayienizM. 3a JONOMOrOI0 TEOPETUYHOTO MOJEINIOBAHHS Ta
emmiprdHOi Bepudikanii posmmpena DDE BBoauts pexum container st Deployer/Executor, siki GyHKIiOHYIOTh Y KOHTEiHepax,
3a0e3Meuyroun OpPKECTpPaIlil0 Ha KOPOTKOCTPOKOBY OPEHIY CTaHIAapTHUMH 3acobamu (Hanpukiaa, Docker ta Kubernetes). Ile
peanizye quHaMidHe MacTabyBaHHS PECYpCiB Ta epeKTHBHE 3aCTOCYBaHHI MOZEINI H METORY B XMAapHHUX CEPeJIOBHIIAX, 3 OCHOBHOO
TIepeBaroro MIBUAKOTO JIOCTYITY 10 MOTY)KHHX OOYHCIICHB TIPH CYTTEBIH €KOHOMIT, OCKLTBKH BUKITIOYAETHCS HEOOXIAHICTh IPUAOAHHS
CepBepiB YW JOBTOCTPOKOBOI OpEHIM Uil OOMEXEHHX o0csriB po3paxyHKiB. OCHOBHHMII crieHapiii 3acTocyBaHHsS — 3ajadi,
opieHToBaHi Ha NeHTparbHHA mporecop (CPU), ockinbku koHTelHepu onTtmMizoBaHi mis CPU-bound oGuwncieHb, Takux sk
PO3paxyHOK TPAEKTOPiil YaCTHHOK IMMITY IUIIXOM YHCIIOBOTO PIllleHHs AW(epeHIialbHUX PiBHSIHB pyxy. Pe3ynbraTu cBiguath mpo
CYITEBE 3MEHIIEHHS CIOKMBAaHHS pecypciB Ta (IHAHCOBHX BHUTpAT IIOPIBHIHO 3 0a30BUM pEXHMOM IpH 30epexeHHi
MIPOAYKTHBHOCTI; IIBU/IKA OpeHJa KOHTEiHepiB 3a0e3medye repeBary B eKOHOMii BHTpaT Ta rHydkocti. Posmmpena DDE crpusie
CTaJMM OOYHCIIEHHSIM, OalaHCyIoYH e()eKTHBHICTh, HAIIMHICTh Ta MIBUAKICTH JUIS PI3HOMAHITHUX 3amad. MaiOyTHI po3mmpeHHs
MOXXYTh IHTETPYBaTH BUKOPHUCTAHHS PEKUMY OUiKyBaHHS Ta TriOepHaIil [uist 3SMEHIIIEHHS] €HeproCIIOKHBaHHSI.

KirouoBi ciioBa: GararocepBepHa apXiTeKTypa; ONTHMI3allis €HepProCHOKUBaHHS, T'eTepPOreHHl HABAHTA)XCHHS; apXiTeKTypa
DDE; uepru 3aBnaHb; KepyBaHHs craHamu cepepiB; Docker, Kubernetes
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