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ABSTRACT 
 

As tabular data remains the most commonly used form of data—ubiquitous across numerous fields such as medicine, finance, 

manufacturing, economics, public governance, and climate science—the problem of developing new methods for the classification 

and regression analysis of tabular datasets remains highly relevant. Although deep learning has revolutionized learning from raw data 

in domains like computer vision and natural language processing, tabular data presents a unique set of challenges that prevent 

conventional neural network–based models from being immediately effective. In our study, we examine the novel TabPFN v2 

(Tabular Prior-Data Fitted Network) model developed by Prior Labs, which promises highly accurate predictions on small- to 

medium-sized datasets without extensive tuning or data preprocessing. TabPFN is a generative, transformer-based foundation model 

that leverages the same mechanisms that have driven the remarkable success of large language models to produce a powerful tabular 

prediction algorithm. It is pre-trained on a large corpus of diverse synthetic tabular datasets and employs in-context learning with a 

bidirectional attention mechanism to address key limitations of existing deep learning models when analyzing row–column–

structured data. Applying TabPFN to a real-world task of classifying supply records for risk assessment, we found that, when used 

within its specified limits, this model can outperform established state-of-the-art gradient-boosted decision tree models. We also 

explored the optimization options available in TabPFN and conducted experiments using our real-world data. Overall TabPFN is a 

powerful example of how transformer model principles can be adapted to row-column organized data. While not being a one-size-

fits-all solution, TabPFN is certainly worth including in the toolkit for tabular data analysis.  

Keywords: Tabular data; machine learning; classification; regression; gradient boosting decision trees; generative transformer 

model; in-context learning; two-way attention mechanism 

1. THE TABULAR DATA CHALLENGE 

Tabular data is the row-column organised values, the kind we see every day in relational 

databases and spreadsheets. And it is the most commonly used form of data, ubiquitous in a huge 

number of applications in medicine, finance, manufacturing, economics, public governance, climate 

science etc. [1]. 

In the last decade we often celebrate the successes of Deep Learning in domains like vision and 

language, but tabular data presents a unique set of challenges that prevent those models from being 

immediately effective [2]. 

Firstly, tabular data is inherently heterogeneous. We’re dealing with a mix of data types ‒ 

categorical values, dense numerical features, and sparse IDs—all living side-by-side.  

Secondly, there’s an inherent lack of spatial or temporal structure. Classic deep learning 

models, like CNNs and standard RNNs, are designed for data with strong local correlation, like 

images or text sequences. But tabular data is different. It’s unstructured in order ‒ meaning the 

column order doesn't usually matter. A model must learn relationships independent of that column 

order. 

Finally, while the dimensionality (number of features) can be high, the datasets (the number of 

samples) are often small to medium-sized when compared to typical DL tasks. This scarcity of data 

makes training large, conventional Deep Learning models prone to catastrophic overfitting. 

2. EXISTING SOLUTIONS: THE GRADIENT BOOSTING REIGN 

For the past two decades, the tabular data analysis domain is dominated by Gradient Boosting 

Machines (GBMs) or other name – Gradient Boosted Decision Trees (GBDTs) methods, such as 

XGBoost, LightGBM, or CatBoost [2].  
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GBMs are ensemble models that sequentially combine hundreds or even thousands of simple, 

weak decision trees. The mechanism relies on an additive correction principle when the first tree 

makes an initial prediction, then subsequent trees are trained specifically to predict and correct the 

errors (or residuals) made by the cumulative ensemble of all previous trees. This iterative, boosting 

process ensures the model focuses its learning effort precisely on the most difficult data points, 

rapidly minimizing the overall error. 

Such architecture grants next powerful capabilities:  

– Handling Non-Linearity and Feature Interaction: decision trees can naturally capture 

complex, non-linear relationships and interactions between features without requiring manual 

feature transformations. The ability to partition the feature space recursively allows the model to 

learn localized patterns that linear models entirely miss; 

– Robustness to Heterogeneity: GBDTs inherently handle mixed data types and are highly 

robust to feature scaling and outliers. Unlike neural networks, they don't require extensive 

normalization or encoding, significantly simplifying the preprocessing pipeline. 

Most popular modern implementations of GBMs are: 

– XGBoost (Extreme Gradient Boosting): Mature and widespread implementation, known for 

its focus on robustness and regularization, offering control mechanisms to prevent overfitting. It has 

been the dominant choice in competitive data science for years [7]; 

– LightGBM (Light Gradient Boosting Machine): LightGBM is distinguished by its efficiency 

and speed, especially on large datasets. It uses a novel leaf-wise tree growth strategy that prioritizes 

error reduction, making it significantly faster than XGBoost in many scenarios [8]; 

– CatBoost (Categorical Boosting): CatBoost’s primary advantage is its native handling of 

categorical features. It employs specialized ordered target encoding and permutation-driven training 

to avoid target leakage, allowing it to often perform well with minimal preprocessing. 

However they discussed TabPFN model is not the first attempt to apply DL to tabular data. 

Quite a number of models were proposed starting from Multi-Layer Perceptrons with specifically 

tuned regularizations, Feature tokenization models like TabNet, Neural Additive Models (NAMs), 

models emulating gradient boosting – Neural Oblivious Decision Ensembles (NODE). While 

innovative, these models often still required extensive training time, heavy hyperparameter tuning, 

and large amounts of data to achieve parity with, let alone surpass, highly-tuned GBDTs [3], [4].  

The concept of a pre-trained transformer model was also explored, e.g. ExcelFormer [5] model 

and the earlier v1 version of TabPFN itself. However, these previous attempts also largely failed to 

dethrone GBDTs. 

3. TABPFN OVERVIEW 

The model examined in our study – TabPFN v2 or Tabular Prior-Data Fitted Network was 

released last summer by Prior Labs with the goal of providing a solution that can perform accurate 

classification or regression on small to medium-sized tabular datasets without dataset-specific 

training or tuning. At its core, TabPFN v2 applies the idea of in-context learning, similar to what we 

see in large language models. Instead of learning a fixed mapping from features to outcomes for one 

dataset, it learns how to learn from examples [6].  

The key idea behind TabPFN is to generate a large corpus of synthetic tabular datasets and then 

train a transformer-based neural network to learn to solve these synthetic prediction tasks. Although 

traditional approaches require hand-engineered solutions for data challenges such as missing values, 

TabPFN autonomously learns effective strategies by solving synthetic tasks that include these 

challenges. 

TabPFN addresses two key limitations inherent to use of transformer-based models with tabular 

data. First, as transformers are designed for sequences, they treat the input data as a single sequence, 

not using the tabular structure. Second, machine learning models are often used in a fit-predict 

model, in which a model is fitted on the training set once and then reused for multiple test datasets. 

Transformer-based ICL algorithms, however, receive train and test data in a single pass and thus 
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perform training and prediction at once. Thus, when a fitted model is reused, it has to redo 

computations for the training set. 

To better use the tabular structure, TabPFN authors proposed an architecture that uses a two-

way attention mechanism, with each cell attending to the other features in its row (that is, its 

sample) and then attending to the same feature across its column (that is, all other samples). This 

design enables the architecture to be invariant to the order of both samples and features and enables 

more efficient training and extrapolation to larger tables than those encountered during training. 

To mitigate repeating computations on the training set for each test sample in a fit-predict 

setting, the model can separate the inference on the training and test samples. This allows 

performing ICL on the training set once, save the resulting state and reusing it for multiple test set 

inferences. 

The result is a model that works remarkably well on datasets up to around ten thousand samples 

and a few hundred features, often outperforming widely used tree-based methods such as CatBoost 

or XGBoost, and doing so in seconds rather than hours of training. It is especially strong when the 

data is heterogeneous or when users want to avoid lengthy feature engineering and hyperparameter 

optimization. 

However, TabPFN v2 is not a universal replacement for traditional models. Because it relies on 

transformer attention over all input samples, its computational cost grows quadratically with dataset 

size. Performance begins to degrade on very large datasets or when the number of features exceeds 

several hundred. It also struggles when the number of classes is high or when the data distribution 

changes significantly from what the model was exposed to during pretraining. 

4. EMPIRICAL EXAMPLE: SUPPLY RISK CLASSIFICATION 

We have performed empirical evaluation of TabPFN performance in a real-world multi-class 

classification task involving supply chain risk assessment.  

The risk evaluation task we would use in our case study is a part of the Model for assessing the 

impact of tactical material procurement risks on order fulfilment in Make-To-Order Manufacturing 

presented recently by the authors at applied information systems and technologies in the digital 

society conference. 

The dataset we use as the base for our classification consists of material procurement records 

extracted from the ERP system of the customer. The initial number of samples is 3381, overall 39 

features were extracted, 7 of them were selected as predictors at exploratory data analysis phase 5 

of selected predictors are categorials with cardinality from 3 to 698. 

The aim of our task is to predict on-time delivery or shipping delays for manufacturing 

materials. We identified four target classes representing In-time delivery and three levels of delay: 

short, moderate, and long. The sample distribution across target classes is highly imbalanced, with 

the IN_TIME delivery class being dominant. 

Overall, due to its limited number of samples, the predominance of categorical features, and the 

imbalance of target classes, our dataset promises to be suitable but quite challenging for both the 

TabPFN and GB models.  

The first model to examine is the proved baseline in the domain of GBMs – XGBoost [7].  

We tried both one-hot plus target encodings and native handling of categorial features, with 

later delivering the better results. We have configured early stopping to control overfitting. And we 

use class weighting to counter target classes imbalance. The SMOTE was also tested, but it 

produced worse results than weighting. At last we applied randomized search to improve the hyper 

parameters set.  

The XGBoost model achieved a usable overall accuracy of 73 % and just above average 61 % 

Macro-F1 score. Corresponding confusion matrix is presented in Fig. 1.  

The second model to test is LightGBM that is widely acknowledged as a more modern and 

optimized implementation of GBDTs [8]. LightGBM is highly reputed for its native efficient 

handling of categorical data. And we applied early stopping and class weighting to our model as 

well as randomized search on hyper parameters. 
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Fig 1. Confusion matrix for XGBoost classification results 

The LightGBM model yielded the better scores, particularly on the critical minority classes. 

The model showed a significant 6 percentage point Macro-F1 improvement over XGBoost, 

reaching a stable 67 % Macro-F1 Score with general accuracy of 77 %. Corresponding confusion 

matrix is presented in Fig. 2. 

Fig 2. Confusion matrix for LightGBM classification results 

And the last is our title model – the TabPFN. TabPFN can handle categorial features and target 

classes imbalance natively and is internally protected from overfitting. 

TabPFN achieved a 79 % Accuracy and a new high of 72 % Macro-F1 Score. Corresponding 

confusion matrix is presented in Fig. 3. These are the best classification results of all models 

reviewed, with TabPFN actually outperforming gradient-boosting models in our case. 

5. TABPFN OPTIMIZATION 

TabPFN authors stress that their model provides strong performance out of the box without 

extensive tuning. Also since TabPFN is a pretrained transformer model it doesn’t have common 

hyperparameters like rate, depth, tree splitting or sampling options. 

Nevertheless several tuning options are available for TabPFN. 
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Fig. 3. Confusion matrix for TabPFN classification results 

First is TunedTabPFN class that provides automatic tuning capabilities using Bayesian 

optimization of both model and preprocessing parameters? Parameters tuned include model 

subtype, pretrained data checkpoint selection, number of estimators and so on as well as 

preprocessing options like scaling, encoding, outliers handling, etc. 

Next is the AutoTabPFN class that implements Portfolio Hyperparameter Ensembling (PHE) – 

the AutoML – style pipeline-level tuning.  

AutoTabPFN creates a post-hoc ensemble of multiple TabPFN configurations using 

AutoGluon. It randomly samples many preprocessing + model configuration combinations, 

evaluates each on a validation split. Then selects a portfolio (subset) of the best-performing 

configurations and creates a post-hoc ensemble of multiple TabPFN configurations, and finally 

combines them via greedy ensemble selection (weighted averaging).  

We have applied AutoTabPFN to our supply dataset classification problem varying max_time 

and eval_metric parameters. Best matching our risk assessment task results were obtained with 

eval_metric set to “recall_macro”, we reached 74 % Macro-F1 Score with general accuracy of 81%. 

Corresponding confusion matrix is presented in Fig. 4. 

 

 
Fig. 4. Confusion matrix for AutoTabPFN PHE optimized classification results 

 

As we can see, tuning delivered marginal improvements of prediction accuracy in critical target 

classes. 
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At last there is an option for refining the pre-trained weights of the transformer model (fine-

tuning TabPFN in model author’s terminology). During fine-tuning Adam optimizer  is being used 

to adapt the general, meta-learned “algorithm” inside the transformer to the quirks of user specific 

dataset, making the internal learned relationships between data points more precise. 

Fine-tuning is especially effective on datasets that exceed recommended for model size and 

require subsampling. In that case the model can be iteratively refined at every split. 

6. CONCLUSION 

We have obtained empirical evidence that the TabPFN model really achieves performance 

levels claimed by authors and when applied within the specified limits it can outperform established 

leaders in the class. While it is definitely not a one-size-fits-all solution and scalability or 

interpretability issues may hamper its performance on some datasets, TabPFN is certainly worth 

including into a tabular data analysis toolkit. 
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АНОТАЦІЯ 
 

На сьогодні табличні дані залишаються найпоширенішою формою представлення інформації — вони повсюдно 

використовуються в таких галузях, як медицина, фінанси, виробництво, економіка, державне управління та кліматологія. 

Тому проблема розроблення нових методів класифікації та регресійного аналізу табличних наборів даних залишається 

надзвичайно актуальною. Хоча методи глибокого навчання здійснили справжню революцію в аналізі вихідних даних у 

таких сферах, як комп’ютерний зір і обробка природної мови, табличні дані становлять унікальний набір викликів, що не 

дозволяє традиційним нейромережевим моделям бути безпосередньо ефективними. У нашому дослідженні розглядається 

новітня модель TabPFN v2 (Tabular Prior-Data Fitted Network), розроблена компанією Prior Labs, яка обіцяє забезпечити 

високу точність прогнозування на малих і середніх вибірках без потреби в трудомісткому налаштуванні гіперпараметрів і 

попередній обробці даних. TabPFN є генеративною моделлю - трансформером, що використовує ті самі механізми, що 

забезпечили  видатні успіхі великих мовних моделей, для створення потужного алгоритму прогнозування табличних даних. 

Модель попередньо навчена на великому корпусі різноманітних синтетичних табличних наборів даних і застосовує 

навчання в контексті (in-context learning) з двонаправленим механізмом уваги для подолання ключових обмежень існуючих 

моделей глибокого навчання під час аналізу даних, організованих у вигляді рядків і стовпців. Застосовуючи TabPFN до 

реального завдання класифікації записів про постачання виробничих матеріалів для оцінювання ризиків, ми з’ясували, що за 

умови використання в межах її визначених обмежень ця модель може перевершувати визнані найсучасніші рішення, 

засновані на градієнтному бустингу над деревами рішень. Ми також дослідили доступні в TabPFN можливості оптимізації 

та провели експерименти з нашими реальними даними. Загалом, TabPFN є яскравим прикладом того, як принципи моделей-

трансформерів можуть бути успішно адаптовані для аналізу табличних даних. Хоча TabPFN не є універсальним рішенням, 

вона безперечно варта того, щоб бути включеною до інструментарію аналізу табличних даних.  

Ключові слова: табличні дані; машинне навчання; класифікація; регресія; градієнтний бустинг над деревами рішень; 

генеративна модель-трансформер; навчання в контексті; двонаправлений механізм уваги 
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