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ABSTRACT

As tabular data remains the most commonly used form of data—ubiquitous across numerous fields such as medicine, finance,
manufacturing, economics, public governance, and climate science—the problem of developing new methods for the classification
and regression analysis of tabular datasets remains highly relevant. Although deep learning has revolutionized learning from raw data
in domains like computer vision and natural language processing, tabular data presents a unique set of challenges that prevent
conventional neural network—based models from being immediately effective. In our study, we examine the novel TabPFN v2
(Tabular Prior-Data Fitted Network) model developed by Prior Labs, which promises highly accurate predictions on small- to
medium-sized datasets without extensive tuning or data preprocessing. TabPFN is a generative, transformer-based foundation model
that leverages the same mechanisms that have driven the remarkable success of large language models to produce a powerful tabular
prediction algorithm. It is pre-trained on a large corpus of diverse synthetic tabular datasets and employs in-context learning with a
bidirectional attention mechanism to address key limitations of existing deep learning models when analyzing row—column—
structured data. Applying TabPFN to a real-world task of classifying supply records for risk assessment, we found that, when used
within its specified limits, this model can outperform established state-of-the-art gradient-boosted decision tree models. We also
explored the optimization options available in TabPFN and conducted experiments using our real-world data. Overall TabPFN is a
powerful example of how transformer model principles can be adapted to row-column organized data. While not being a one-size-
fits-all solution, TabPFN is certainly worth including in the toolkit for tabular data analysis.

Keywords: Tabular data; machine learning; classification; regression; gradient boosting decision trees; generative transformer
model; in-context learning; two-way attention mechanism

1. THE TABULAR DATA CHALLENGE

Tabular data is the row-column organised values, the kind we see every day in relational
databases and spreadsheets. And it is the most commonly used form of data, ubiquitous in a huge
number of applications in medicine, finance, manufacturing, economics, public governance, climate
science etc. [1].

In the last decade we often celebrate the successes of Deep Learning in domains like vision and
language, but tabular data presents a unique set of challenges that prevent those models from being
immediately effective [2].

Firstly, tabular data is inherently heterogeneous. We’re dealing with a mix of data types —
categorical values, dense numerical features, and sparse IDs—all living side-by-side.

Secondly, there’s an inherent lack of spatial or temporal structure. Classic deep learning
models, like CNNs and standard RNNs, are designed for data with strong local correlation, like
images or text sequences. But tabular data is different. It’s unstructured in order — meaning the
column order doesn't usually matter. A model must learn relationships independent of that column
order.

Finally, while the dimensionality (number of features) can be high, the datasets (the number of
samples) are often small to medium-sized when compared to typical DL tasks. This scarcity of data
makes training large, conventional Deep Learning models prone to catastrophic overfitting.

2. EXISTING SOLUTIONS: THE GRADIENT BOOSTING REIGN

For the past two decades, the tabular data analysis domain is dominated by Gradient Boosting
Machines (GBMs) or other name — Gradient Boosted Decision Trees (GBDTs) methods, such as
XGBoost, LightGBM, or CatBoost [2].
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GBMs are ensemble models that sequentially combine hundreds or even thousands of simple,
weak decision trees. The mechanism relies on an additive correction principle when the first tree
makes an initial prediction, then subsequent trees are trained specifically to predict and correct the
errors (or residuals) made by the cumulative ensemble of all previous trees. This iterative, boosting
process ensures the model focuses its learning effort precisely on the most difficult data points,
rapidly minimizing the overall error.

Such architecture grants next powerful capabilities:

— Handling Non-Linearity and Feature Interaction: decision trees can naturally capture
complex, non-linear relationships and interactions between features without requiring manual
feature transformations. The ability to partition the feature space recursively allows the model to
learn localized patterns that linear models entirely miss;

— Robustness to Heterogeneity: GBDTs inherently handle mixed data types and are highly
robust to feature scaling and outliers. Unlike neural networks, they don't require extensive
normalization or encoding, significantly simplifying the preprocessing pipeline.

Most popular modern implementations of GBMs are:

— XGBoost (Extreme Gradient Boosting): Mature and widespread implementation, known for
its focus on robustness and regularization, offering control mechanisms to prevent overfitting. It has
been the dominant choice in competitive data science for years [7];

— LightGBM (Light Gradient Boosting Machine): LightGBM is distinguished by its efficiency
and speed, especially on large datasets. It uses a novel leaf-wise tree growth strategy that prioritizes
error reduction, making it significantly faster than XGBoost in many scenarios [8];

— CatBoost (Categorical Boosting): CatBoost’s primary advantage is its native handling of
categorical features. It employs specialized ordered target encoding and permutation-driven training
to avoid target leakage, allowing it to often perform well with minimal preprocessing.

However they discussed TabPFN model is not the first attempt to apply DL to tabular data.
Quite a number of models were proposed starting from Multi-Layer Perceptrons with specifically
tuned regularizations, Feature tokenization models like TabNet, Neural Additive Models (NAMS),
models emulating gradient boosting — Neural Oblivious Decision Ensembles (NODE). While
innovative, these models often still required extensive training time, heavy hyperparameter tuning,
and large amounts of data to achieve parity with, let alone surpass, highly-tuned GBDTSs [3], [4].

The concept of a pre-trained transformer model was also explored, e.g. ExcelFormer [5] model
and the earlier v1 version of TabPFN itself. However, these previous attempts also largely failed to
dethrone GBDTSs.

3. TABPFN OVERVIEW

The model examined in our study — TabPFN v2 or Tabular Prior-Data Fitted Network was
released last summer by Prior Labs with the goal of providing a solution that can perform accurate
classification or regression on small to medium-sized tabular datasets without dataset-specific
training or tuning. At its core, TabPFN v2 applies the idea of in-context learning, similar to what we
see in large language models. Instead of learning a fixed mapping from features to outcomes for one
dataset, it learns how to learn from examples [6].

The key idea behind TabPFN is to generate a large corpus of synthetic tabular datasets and then
train a transformer-based neural network to learn to solve these synthetic prediction tasks. Although
traditional approaches require hand-engineered solutions for data challenges such as missing values,
TabPFN autonomously learns effective strategies by solving synthetic tasks that include these
challenges.

TabPFN addresses two key limitations inherent to use of transformer-based models with tabular
data. First, as transformers are designed for sequences, they treat the input data as a single sequence,
not using the tabular structure. Second, machine learning models are often used in a fit-predict
model, in which a model is fitted on the training set once and then reused for multiple test datasets.
Transformer-based ICL algorithms, however, receive train and test data in a single pass and thus
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perform training and prediction at once. Thus, when a fitted model is reused, it has to redo
computations for the training set.

To better use the tabular structure, TabPFN authors proposed an architecture that uses a two-
way attention mechanism, with each cell attending to the other features in its row (that is, its
sample) and then attending to the same feature across its column (that is, all other samples). This
design enables the architecture to be invariant to the order of both samples and features and enables
more efficient training and extrapolation to larger tables than those encountered during training.

To mitigate repeating computations on the training set for each test sample in a fit-predict
setting, the model can separate the inference on the training and test samples. This allows
performing ICL on the training set once, save the resulting state and reusing it for multiple test set
inferences.

The result is a model that works remarkably well on datasets up to around ten thousand samples
and a few hundred features, often outperforming widely used tree-based methods such as CatBoost
or XGBoost, and doing so in seconds rather than hours of training. It is especially strong when the
data is heterogeneous or when users want to avoid lengthy feature engineering and hyperparameter
optimization.

However, TabPFN v2 is not a universal replacement for traditional models. Because it relies on
transformer attention over all input samples, its computational cost grows quadratically with dataset
size. Performance begins to degrade on very large datasets or when the number of features exceeds
several hundred. It also struggles when the number of classes is high or when the data distribution
changes significantly from what the model was exposed to during pretraining.

4. EMPIRICAL EXAMPLE: SUPPLY RISK CLASSIFICATION

We have performed empirical evaluation of TabPFN performance in a real-world multi-class
classification task involving supply chain risk assessment.

The risk evaluation task we would use in our case study is a part of the Model for assessing the
impact of tactical material procurement risks on order fulfilment in Make-To-Order Manufacturing
presented recently by the authors at applied information systems and technologies in the digital
society conference.

The dataset we use as the base for our classification consists of material procurement records
extracted from the ERP system of the customer. The initial number of samples is 3381, overall 39
features were extracted, 7 of them were selected as predictors at exploratory data analysis phase 5
of selected predictors are categorials with cardinality from 3 to 698.

The aim of our task is to predict on-time delivery or shipping delays for manufacturing
materials. We identified four target classes representing In-time delivery and three levels of delay:
short, moderate, and long. The sample distribution across target classes is highly imbalanced, with
the IN_TIME delivery class being dominant.

Overall, due to its limited number of samples, the predominance of categorical features, and the
imbalance of target classes, our dataset promises to be suitable but quite challenging for both the
TabPFN and GB models.

The first model to examine is the proved baseline in the domain of GBMs — XGBoost [7].

We tried both one-hot plus target encodings and native handling of categorial features, with
later delivering the better results. We have configured early stopping to control overfitting. And we
use class weighting to counter target classes imbalance. The SMOTE was also tested, but it
produced worse results than weighting. At last we applied randomized search to improve the hyper
parameters set.

The XGBoost model achieved a usable overall accuracy of 73 % and just above average 61 %
Macro-F1 score. Corresponding confusion matrix is presented in Fig. 1.

The second model to test is LightGBM that is widely acknowledged as a more modern and
optimized implementation of GBDTs [8]. LightGBM is highly reputed for its native efficient
handling of categorical data. And we applied early stopping and class weighting to our model as
well as randomized search on hyper parameters.

56 Foundations of Computer Science ISSN 2522-1523 (Online)



Mrykhin A. L., Antoshchuk S. G. / Informatics. Culture. Technique. 2025; Vol.2: 54-60

Confusion Matrix (Raw Counts) Confusion Matrix (Normalized)

300
IN_TIME 21 2 24 25 IN_TIME
250

LONG_DELAY 2 76 17 8 200 LONG_DELAY

08

07

06

05

- 150 -04

True Label
True Label

MODERATE_DELAY 9 13 42 25 MODERATE_DELAY

-03
- 100

-02

=]
.
I
&
8

SHORT_DELAY SHORT_DELAY

-01

IN_TIME

w
=
S
=

LONG_DELAY
MODERATE_DELAY
SHORT_DELAY
LONG_DELAY
MODERATE_DELAY
SHORT_DELAY

Predicted Lab Predicted Label

Fig 1. Confusion matrix for XGBoost classification results

@

The LightGBM model yielded the better scores, particularly on the critical minority classes.
The model showed a significant 6 percentage point Macro-F1 improvement over XGBoost,
reaching a stable 67 % Macro-F1 Score with general accuracy of 77 %. Corresponding confusion
matrix is presented in Fig. 2.
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Fig 2. Confusion matrix for LightGBM classification results
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And the last is our title model — the TabPFN. TabPFN can handle categorial features and target
classes imbalance natively and is internally protected from overfitting.

TabPFN achieved a 79 % Accuracy and a new high of 72 % Macro-F1 Score. Corresponding
confusion matrix is presented in Fig. 3. These are the best classification results of all models
reviewed, with TabPFN actually outperforming gradient-boosting models in our case.

5. TABPFN OPTIMIZATION

TabPFN authors stress that their model provides strong performance out of the box without
extensive tuning. Also since TabPFN is a pretrained transformer model it doesn’t have common
hyperparameters like rate, depth, tree splitting or sampling options.

Nevertheless several tuning options are available for TabPFN.
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Fig. 3. Confusion matrix for TabPFN classification results

First is TunedTabPFN class that provides automatic tuning capabilities using Bayesian
optimization of both model and preprocessing parameters? Parameters tuned include model
subtype, pretrained data checkpoint selection, number of estimators and so on as well as
preprocessing options like scaling, encoding, outliers handling, etc.

Next is the AutoTabPFN class that implements Portfolio Hyperparameter Ensembling (PHE) —
the AutoML — style pipeline-level tuning.

AutoTabPFN creates a post-hoc ensemble of multiple TabPFN configurations using
AutoGluon. It randomly samples many preprocessing + model configuration combinations,
evaluates each on a validation split. Then selects a portfolio (subset) of the best-performing
configurations and creates a post-hoc ensemble of multiple TabPFN configurations, and finally
combines them via greedy ensemble selection (weighted averaging).

We have applied AutoTabPFN to our supply dataset classification problem varying max_time
and eval_metric parameters. Best matching our risk assessment task results were obtained with
eval_metric set to “recall_macro”, we reached 74 % Macro-F1 Score with general accuracy of 81%.
Corresponding confusion matrix is presented in Fig. 4.
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Fig. 4. Confusion matrix for AutoTabPFN PHE optimized classification results

As we can see, tuning delivered marginal improvements of prediction accuracy in critical target
classes.
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At last there is an option for refining the pre-trained weights of the transformer model (fine-
tuning TabPFN in model author’s terminology). During fine-tuning Adam optimizer is being used
to adapt the general, meta-learned “algorithm” inside the transformer to the quirks of user specific
dataset, making the internal learned relationships between data points more precise.

Fine-tuning is especially effective on datasets that exceed recommended for model size and
require subsampling. In that case the model can be iteratively refined at every split.

6. CONCLUSION

We have obtained empirical evidence that the TabPFN model really achieves performance
levels claimed by authors and when applied within the specified limits it can outperform established
leaders in the class. While it is definitely not a one-size-fits-all solution and scalability or
interpretability issues may hamper its performance on some datasets, TabPFN is certainly worth
including into a tabular data analysis toolkit.
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AHOTANIA

Ha cporomni TabnuyHi JaHi 3alMINAIOTHCS HAWMOUIMPEHINIO (GopMor0 MpeAcTaBieHHS iH(opMmamii — BOHU TOBCIOJHO
BUKOPHUCTOBYIOTBCS B TaKUX Taly3fiX, K MEAWIMHA, (iHAHCH, BUPOOHHUITBO, EKOHOMIKA, JAEP>KaBHE YNPABIIHHSA Ta KIIMaTOJIOTIS.
Tomy mpobiema po3poOJeHHS HOBHX METOAIB Kiachgikaiii Ta perpeciifHoro aHamizy TaONMYHUX HAOOPIB JAQHMX 3aJIUIIAETHCS
HaJI3BUYaliHO aKTyaJbHOI0. X04Ya METOAW TJIMOOKOTO HaBYAHHS 3IMCHIIM CIPAaBXXHIO PEBOJIIONIIO0 B aHANI3I BUXITHHX NaHHX Yy
TaKux cdepax, sk KOMII'IOTepHHUH 3ip 1 00poOka IpHPOAHOI MOBH, TaOJIMYHI JaHI CTAHOBILATH YHIKaNbHHN Hallp BHKJIMKIB, IO HE
JI03BOJISIE TPATULIHUM HEHPOMEpEeKeBHM MoJelsIM OyTH Oe3rmocepeHbo eheKTHBHUMH. Y HAIIOMY JOCITIIDKEHHI PO3TIISAETHCS
HOBiTHs Monenb TabPFN v2 (Tabular Prior-Data Fitted Network), po3pobnena xommaniero Prior Labs, sika 06iipie 3abe3neuntu
BHCOKY TOYHICTh MPOTHO3YBaHHS Ha MallMX 1 cepeiHix BUOipkax 0e3 moTpeOu B TPyJOMICTKOMY HAJalITyBaHHI rimepmapaMeTpiB i
nonepeaHiii 06po6ui ganux. TabPFN e reHepatuBHOI0 MOAEIIO - TpaHC(HOpPMEPOM, IIO0 BHKOPUCTOBYE Ti CaMi MEXaHi3MH, LI0
3a0e3MeyMIM BUJIATHI YCMiXi BEIMKUX MOBHUX MOJIENCH, Ul CTBOPECHHS ITOTYKHOTO alrOPUTMY IPOTHO3YBAaHHS TaOJIMYHHX JaHUX.
Mopens TonepesHbO HaBUYEHAa Ha BEJIMKOMY KOPITyCl PI3HOMAHITHHUX CHHTETHYHHX TaOIMYHMX HaOOpIiB TaHWX 1 3aCTOCOBYE
HaBYaHHS B KOHTEKCTI (in-context learning) 3 BOHANpaBIeHHM MEXaHi3MOM yBaru IS ITOJO0JIAaHHS KIIFOUOBUX OOMEXEHb ICHYFOUHX
Mozenell TIMOOKOTro HaBYaHHS IIiJ] Yac aHaNi3y JaHWX, OPraHi30BaHUX y BUTJIAIl PAAKIB i croBHUiB. 3actocoByroun TabPFN no
peansHOro 3aBIaHHs KiIacupikalii 3anuciB Ipo mocTadyaHHs BUPOOHNYUX MaTepialliB Ul OLIHIOBAHHS PU3HKIB, MU 3’CYBaJIH, IO 33
YMOBH BUKOPUCTAHHA B MeXaxX ii BH3HAUeHHMX OOMEXKEHb IsI MOJENIh MOXKE IepeBepIlyBaTH BH3HAHI HalCydacHINI pilleHHS,
3aCHOBaHI Ha rpaJlicHTHOMY OYCTHHTY HaJ JepeBaMH pilieHb. Mu Takox fgociimumu goctymnHi B TabPFN MoxauBocTi onTumizarii
Ta TPOBENH EKCIIEPUMEHTH 3 HATNMU pealbHUMHU JaHUMU. 3aranom, TabPFN e sickpaBuM npuKIagoM TOTO, SK MPUHIMIN MOJEIEH-
TpancdopmepiB MOXKYTh OYTH YCIIIIHO aaNTOBaHi Ul aHAIi3y TabnuyHux aaHux. Xoua TabPFN He € yHiBepcalbHUM pillleHHSM,
BOHa Oe3NepeyHo BapTa TOro, n100 OyTH BKIIOYEHOIO IO IHCTPYMEHTapilo aHali3y TaOJIHYHNX JAHUX.

KunrouoBi ciioBa: TabianyuHi 1aHi; MaIlIMHHE HAaBYaHHS; KIacu(ikamis; perpecis; rpalieHTHUI OyCTHHT HaJ JepeBaMH PilllcHb,
reHepaTHBHA MOJENb-TpaHc(hOpMep; HaBUaHHS B KOHTEKCTI; JIBOHAINIPABICHNI MEXaHi3M yBaru
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