Research on the impact of optimization algorithms on the accuracy of Yolov11 neural networks

Authors

  • Serhii M. Kovbasa Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр. Берестейський, 37, Київ, Україна Автор
  • Anton O. Kholosha National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Beresteiskyi Ave. Kyiv, Ukraine Автор

DOI:

https://doi.org/10.15276/ict.02.2025.66

Keywords:

Artificial intelligence, computer vision, hyperparameters, optimizers, YOLOv11, Roboflow, accuracy, IoU

Abstract

Visual inspection and positioning based on image detection results is a rapidly growing component of automation systems. Machine vision is increasingly used in production lines for various purposes. Improving recognition accuracy in such applications can be a difficult task, especially in conditions of possible limitations, one of which may be size and weight restrictions, which in turn limit the power of computer devices that implement image detection and recognition. A possible solution to this problem is to improve recognition accuracy by increasing the number of image variants in the dataset and fine-tuning the model's hyperparameters. This article investigates the effectiveness of hyperparameter tuning for the YOLO (You Only Look Once) image detection model, which can be further implemented in electromechanical systems for positioning moving objects in space.

Downloads

Download data is not yet available.

Author Biographies

  • Serhii M. Kovbasa, Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського», пр. Берестейський, 37, Київ, Україна

    PhD, Associate Professor, Head of the Department of Automation of Electromechanical Systems and Electric Drives

    Scopus Author ID: 55328200100

  • Anton O. Kholosha, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Beresteiskyi Ave. Kyiv, Ukraine

    Postgraduate Student of the Department of Automation of Electromechanical Systems and Electric Drives

Published

2025-11-05

How to Cite

Research on the impact of optimization algorithms on the accuracy of Yolov11 neural networks. (2025). Інформатика. Культура. Техніка, 2, 431–441. https://doi.org/10.15276/ict.02.2025.66

Most read articles by the same author(s)